論文の概要: Magentic-One: A Generalist Multi-Agent System for Solving Complex Tasks
- arxiv url: http://arxiv.org/abs/2411.04468v1
- Date: Thu, 07 Nov 2024 06:36:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-08 19:37:47.658099
- Title: Magentic-One: A Generalist Multi-Agent System for Solving Complex Tasks
- Title(参考訳): Magentic-One: 複雑なタスクを解く汎用マルチエージェントシステム
- Authors: Adam Fourney, Gagan Bansal, Hussein Mozannar, Cheng Tan, Eduardo Salinas, Erkang, Zhu, Friederike Niedtner, Grace Proebsting, Griffin Bassman, Jack Gerrits, Jacob Alber, Peter Chang, Ricky Loynd, Robert West, Victor Dibia, Ahmed Awadallah, Ece Kamar, Rafah Hosn, Saleema Amershi,
- Abstract要約: 本稿では,複雑なタスクを解くための高性能なオープンソースエージェントシステムMagentic-Oneを紹介する。
Magentic-Oneでは、リードエージェントであるOrchestratorが進捗を追跡し、エラーからリカバリするための再計画を行うマルチエージェントアーキテクチャを使用している。
Magentic-Oneは3つの多様かつ挑戦的なエージェントベンチマークにおいて、最先端技術に対して統計的に競争力を発揮することを示す。
- 参考スコア(独自算出の注目度): 39.084974125007165
- License:
- Abstract: Modern AI agents, driven by advances in large foundation models, promise to enhance our productivity and transform our lives by augmenting our knowledge and capabilities. To achieve this vision, AI agents must effectively plan, perform multi-step reasoning and actions, respond to novel observations, and recover from errors, to successfully complete complex tasks across a wide range of scenarios. In this work, we introduce Magentic-One, a high-performing open-source agentic system for solving such tasks. Magentic-One uses a multi-agent architecture where a lead agent, the Orchestrator, plans, tracks progress, and re-plans to recover from errors. Throughout task execution, the Orchestrator directs other specialized agents to perform tasks as needed, such as operating a web browser, navigating local files, or writing and executing Python code. We show that Magentic-One achieves statistically competitive performance to the state-of-the-art on three diverse and challenging agentic benchmarks: GAIA, AssistantBench, and WebArena. Magentic-One achieves these results without modification to core agent capabilities or to how they collaborate, demonstrating progress towards generalist agentic systems. Moreover, Magentic-One's modular design allows agents to be added or removed from the team without additional prompt tuning or training, easing development and making it extensible to future scenarios. We provide an open-source implementation of Magentic-One, and we include AutoGenBench, a standalone tool for agentic evaluation. AutoGenBench provides built-in controls for repetition and isolation to run agentic benchmarks in a rigorous and contained manner -- which is important when agents' actions have side-effects. Magentic-One, AutoGenBench and detailed empirical performance evaluations of Magentic-One, including ablations and error analysis are available at https://aka.ms/magentic-one
- Abstract(参考訳): 大規模な基盤モデルの進歩によって推進される現代のAIエージェントは、私たちの生産性を高め、私たちの知識と能力を強化することで私たちの生活を変えることを約束します。
このビジョンを達成するためには、AIエージェントは、多段階の推論とアクションを効果的に計画し、実行し、新しい観察に反応し、エラーから回復し、幅広いシナリオで複雑なタスクを成功させる必要がある。
本稿では,そのような課題を解決するための高性能なオープンソースエージェントシステムであるMagentic-Oneを紹介する。
Magentic-Oneでは、リードエージェントであるOrchestratorが計画、進捗の追跡、エラーからのリカバリのための再計画を行うマルチエージェントアーキテクチャを使用している。
タスク実行を通じて、Orchestratorは、Webブラウザの操作、ローカルファイルのナビゲート、Pythonコードの記述と実行など、他の特別なエージェントに必要に応じてタスクを実行するように指示する。
Magentic-Oneは、GAIA、AssistantBench、WebArenaの3つの多種多様かつ挑戦的なエージェントベンチマークにおいて、最先端技術に対して統計的に競争力を発揮することを示す。
Magentic-Oneは、コアエージェント機能やコラボレーション方法を変更することなく、これらの結果を達成し、汎用エージェントシステムへの進歩を示す。
さらに、Magentic-Oneのモジュール設計では、エージェントの追加や削除を、迅速なチューニングやトレーニングを必要とせず、開発を緩和し、将来のシナリオに拡張できるようにしている。
我々はMagentic-Oneのオープンソース実装を提供しており、エージェント評価のためのスタンドアロンツールであるAutoGenBenchも含んでいます。
AutoGenBenchは、エージェントのアクションが副作用がある場合に重要な、厳密で包含された方法でエージェントベンチマークを実行するための、反復と分離のためのビルトインコントロールを提供する。
Magentic-One、AutoGenBench、Magentic-Oneの詳細なパフォーマンス評価、改善とエラー解析はhttps://aka.ms/magentic-oneで公開されている。
関連論文リスト
- AgentSquare: Automatic LLM Agent Search in Modular Design Space [16.659969168343082]
大規模言語モデル(LLM)は、幅広い複雑なタスクを処理できるエージェントシステムの急速な成長をもたらした。
Modularized LLM Agent Search (MoLAS) という新しい研究課題を紹介した。
論文 参考訳(メタデータ) (2024-10-08T15:52:42Z) - Gödel Agent: A Self-Referential Agent Framework for Recursive Self-Improvement [117.94654815220404]
G"odel AgentはG"odelマシンにインスパイアされた自己進化型フレームワークである。
G"odel Agentは、パフォーマンス、効率、一般化性において手作業によるエージェントを上回る、継続的な自己改善を実現することができる。
論文 参考訳(メタデータ) (2024-10-06T10:49:40Z) - LLM-Agent-UMF: LLM-based Agent Unified Modeling Framework for Seamless Integration of Multi Active/Passive Core-Agents [0.0]
LLM-Agent-UMF(LLM-Agent-UMF)に基づく新しいエージェント統一モデリングフレームワークを提案する。
我々のフレームワークはLLMエージェントの異なるコンポーネントを区別し、LLMとツールを新しい要素であるコアエージェントから分離する。
我々は,13の最先端エージェントに適用し,それらの機能との整合性を実証することによって,我々の枠組みを評価する。
論文 参考訳(メタデータ) (2024-09-17T17:54:17Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
既存のマルチエージェントフレームワークは、多種多様なサードパーティエージェントの統合に苦慮することが多い。
我々はこれらの制限に対処する新しいフレームワークであるInternet of Agents (IoA)を提案する。
IoAはエージェント統合プロトコル、インスタントメッセージのようなアーキテクチャ設計、エージェントのチーム化と会話フロー制御のための動的メカニズムを導入している。
論文 参考訳(メタデータ) (2024-07-09T17:33:24Z) - Mobile-Agent-v2: Mobile Device Operation Assistant with Effective Navigation via Multi-Agent Collaboration [52.25473993987409]
モバイルデバイス操作支援のためのマルチエージェントアーキテクチャであるMobile-Agent-v2を提案する。
アーキテクチャは、計画エージェント、決定エージェント、反射エージェントの3つのエージェントから構成される。
単一エージェントアーキテクチャと比較して,Mobile-Agent-v2ではタスク完了率が30%以上向上していることを示す。
論文 参考訳(メタデータ) (2024-06-03T05:50:00Z) - A Unified Debugging Approach via LLM-Based Multi-Agent Synergy [39.11825182386288]
FixAgentはマルチエージェントのシナジーによる統合デバッグのためのエンドツーエンドフレームワークである。
1.25$times$ 2.56$times$レポレベルのベンチマークであるDefects4Jのバグを修正した。
論文 参考訳(メタデータ) (2024-04-26T04:55:35Z) - AgentScope: A Flexible yet Robust Multi-Agent Platform [66.64116117163755]
AgentScopeは、メッセージ交換をコアコミュニケーションメカニズムとする、開発者中心のマルチエージェントプラットフォームである。
豊富な構文ツール、組み込みエージェントとサービス機能、アプリケーションのデモとユーティリティモニタのためのユーザフレンドリなインターフェース、ゼロコードプログラミングワークステーション、自動プロンプトチューニング機構により、開発とデプロイメントの両方の障壁は大幅に低下した。
論文 参考訳(メタデータ) (2024-02-21T04:11:28Z) - Dynamic LLM-Agent Network: An LLM-agent Collaboration Framework with
Agent Team Optimization [59.39113350538332]
大規模言語モデル(LLM)エージェントは幅広いタスクで有効であることが示されており、複数のLLMエージェントを組み込むことで、その性能をさらに向上することができる。
既存のアプローチでは、固定されたエージェントセットを使用して静的アーキテクチャで相互に相互作用する。
我々は、推論やコード生成といった複雑なタスクにおいて、LLM-agentコラボレーションのためにDynamic LLM-Agent Network(textbfDyLAN$)というフレームワークを構築します。
論文 参考訳(メタデータ) (2023-10-03T16:05:48Z) - AutoAgents: A Framework for Automatic Agent Generation [27.74332323317923]
AutoAgentsは、さまざまなタスクに応じてAIチームを構築するために、複数の専門エージェントを適応的に生成し、コーディネートする革新的なフレームワークである。
各種ベンチマーク実験により,AutoAgentsは既存のマルチエージェント手法よりも一貫性と正確な解を生成することが示された。
論文 参考訳(メタデータ) (2023-09-29T14:46:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。