IncidentNet: Traffic Incident Detection, Localization and Severity Estimation with Sparse Sensing
- URL: http://arxiv.org/abs/2408.00996v1
- Date: Fri, 2 Aug 2024 04:09:15 GMT
- Title: IncidentNet: Traffic Incident Detection, Localization and Severity Estimation with Sparse Sensing
- Authors: Sai Shashank Peddiraju, Kaustubh Harapanahalli, Edward Andert, Aviral Shrivastava,
- Abstract summary: IncidentNet is a novel approach for classifying, localizing, and estimating the severity of traffic incidents.
Our model works on microscopic traffic data that can be collected using cameras installed at traffic intersections.
- Score: 0.6787248655856052
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prior art in traffic incident detection relies on high sensor coverage and is primarily based on decision-tree and random forest models that have limited representation capacity and, as a result, cannot detect incidents with high accuracy. This paper presents IncidentNet - a novel approach for classifying, localizing, and estimating the severity of traffic incidents using deep learning models trained on data captured from sparsely placed sensors in urban environments. Our model works on microscopic traffic data that can be collected using cameras installed at traffic intersections. Due to the unavailability of datasets that provide microscopic traffic details and traffic incident details simultaneously, we also present a methodology to generate a synthetic microscopic traffic dataset that matches given macroscopic traffic data. IncidentNet achieves a traffic incident detection rate of 98%, with false alarm rates of less than 7% in 197 seconds on average in urban environments with cameras on less than 20% of the traffic intersections.
Related papers
- Traffic Scene Parsing through the TSP6K Dataset [109.69836680564616]
We introduce a specialized traffic monitoring dataset, termed TSP6K, with high-quality pixel-level and instance-level annotations.
The dataset captures more crowded traffic scenes with several times more traffic participants than the existing driving scenes.
We propose a detail refining decoder for scene parsing, which recovers the details of different semantic regions in traffic scenes.
arXiv Detail & Related papers (2023-03-06T02:05:14Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
We propose a Laplacian enhanced low-rank tensor (LETC) framework featuring both lowrankness and multi-temporal correlations for large-scale traffic speed kriging.
We then design an efficient solution algorithm via several effective numeric techniques to scale up the proposed model to network-wide kriging.
arXiv Detail & Related papers (2022-10-21T07:25:57Z) - TAD: A Large-Scale Benchmark for Traffic Accidents Detection from Video
Surveillance [2.1076255329439304]
Existing datasets in traffic accidents are either small-scale, not from surveillance cameras, not open-sourced, or not built for freeway scenes.
After integration and annotation by various dimensions, a large-scale traffic accidents dataset named TAD is proposed in this work.
arXiv Detail & Related papers (2022-09-26T03:00:50Z) - Real-Time Accident Detection in Traffic Surveillance Using Deep Learning [0.8808993671472349]
This paper presents a new efficient framework for accident detection at intersections for traffic surveillance applications.
The proposed framework consists of three hierarchical steps, including efficient and accurate object detection based on the state-of-the-art YOLOv4 method.
The robustness of the proposed framework is evaluated using video sequences collected from YouTube with diverse illumination conditions.
arXiv Detail & Related papers (2022-08-12T19:07:20Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - Deep Representation of Imbalanced Spatio-temporal Traffic Flow Data for
Traffic Accident Detection [0.3670422696827526]
This paper studies deep representation of loop detector data using Long-Short Term Memory (LSTM) network for automatic detection of freeway accidents.
Experiments on real accident and loop detector data collected from the Twin Cities Metro freeways of Minnesota demonstrate that deep representation of traffic flow data using LSTM network has the potential to detect freeway accidents in less than 18 minutes.
arXiv Detail & Related papers (2021-08-21T13:18:04Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
We organize an experimental campaign with video measurement in an area within the urban network of Zurich, Switzerland.
We focus on capturing the traffic state in terms of traffic flow and travel times by ensuring measurements from established thermal cameras.
We propose a simple yet efficient Multiple Linear Regression (MLR) model to estimate travel times with fusion of various data sources.
arXiv Detail & Related papers (2021-08-02T08:13:57Z) - A model for traffic incident prediction using emergency braking data [77.34726150561087]
We address the fundamental problem of data scarcity in road traffic accident prediction by training our model on emergency braking events instead of accidents.
We present a prototype implementing a traffic incident prediction model for Germany based on emergency braking data from Mercedes-Benz vehicles.
arXiv Detail & Related papers (2021-02-12T18:17:12Z) - Deep traffic light detection by overlaying synthetic context on
arbitrary natural images [49.592798832978296]
We propose a method to generate artificial traffic-related training data for deep traffic light detectors.
This data is generated using basic non-realistic computer graphics to blend fake traffic scenes on top of arbitrary image backgrounds.
It also tackles the intrinsic data imbalance problem in traffic light datasets, caused mainly by the low amount of samples of the yellow state.
arXiv Detail & Related papers (2020-11-07T19:57:22Z) - Spatio-Temporal Point Processes with Attention for Traffic Congestion
Event Modeling [28.994426283738363]
We present a novel framework for modeling traffic congestion events over road networks.
Using multi-modal data by combining count data from traffic sensors with police reports that report traffic incidents, we aim to capture two types of triggering effect for congestion events.
Current traffic congestion at one location may cause future congestion over the road network, and traffic incidents may cause spread traffic congestion.
arXiv Detail & Related papers (2020-05-15T04:22:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.