The EAP-AIAS: Adapting the AI Assessment Scale for English for Academic Purposes
- URL: http://arxiv.org/abs/2408.01075v1
- Date: Fri, 2 Aug 2024 07:51:29 GMT
- Title: The EAP-AIAS: Adapting the AI Assessment Scale for English for Academic Purposes
- Authors: Jasper Roe, Mike Perkins, Yulia Tregubova,
- Abstract summary: This paper proposes an adaptation of the AI Assessment Scale (AIAS) specifically tailored for English for Academic Purposes (EAP) contexts.
The EAP-AIAS consists of five levels, ranging from "No AI" to "Full AI", each delineating appropriate GenAI usage in EAP tasks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The rapid advancement of Generative Artificial Intelligence (GenAI) presents both opportunities and challenges for English for Academic Purposes (EAP) instruction. This paper proposes an adaptation of the AI Assessment Scale (AIAS) specifically tailored for EAP contexts, termed the EAP-AIAS. This framework aims to provide a structured approach for integrating GenAI tools into EAP assessment practices while maintaining academic integrity and supporting language development. The EAP-AIAS consists of five levels, ranging from "No AI" to "Full AI", each delineating appropriate GenAI usage in EAP tasks. We discuss the rationale behind this adaptation, considering the unique needs of language learners and the dual focus of EAP on language proficiency and academic acculturation. This paper explores potential applications of the EAP-AIAS across various EAP assessment types, including writing tasks, presentations, and research projects. By offering a flexible framework, the EAP-AIAS seeks to empower EAP practitioners seeking to deal with the complexities of GenAI integration in education and prepare students for an AI-enhanced academic and professional future. This adaptation represents a step towards addressing the pressing need for ethical and pedagogically sound AI integration in language education.
Related papers
- Enhancing AI-Driven Education: Integrating Cognitive Frameworks, Linguistic Feedback Analysis, and Ethical Considerations for Improved Content Generation [0.0]
This paper synthesizes insights from four related studies to propose a comprehensive framework for enhancing AI-driven educational tools.
We integrate cognitive assessment frameworks, linguistic analysis of AI-generated feedback, and ethical design principles to guide the development of effective and responsible AI tools.
arXiv Detail & Related papers (2025-05-01T06:36:21Z) - From Assessment to Practice: Implementing the AIAS Framework in EFL Teaching and Learning [0.0]
We show how the use of a general, all-purposes framework can be tailored to the English as a Foreign Language (EFL) writing and translation context.
arXiv Detail & Related papers (2025-01-01T21:48:49Z) - BoilerTAI: A Platform for Enhancing Instruction Using Generative AI in Educational Forums [0.0]
This paper describes a practical, scalable platform that seamlessly integrates Generative AI (GenAI) with online educational forums.
The platform empowers instructional staff to efficiently manage, refine, and approve responses by facilitating interaction between student posts and a Large Language Model (LLM)
arXiv Detail & Related papers (2024-09-20T04:00:30Z) - Comprehensive AI Assessment Framework: Enhancing Educational Evaluation with Ethical AI Integration [0.0]
This paper presents the Comprehensive AI Assessment Framework (CAIAF), an evolved version of the AI Assessment Scale (AIAS) by Perkins, Furze, Roe, and MacVaugh.
The CAIAF incorporates stringent ethical guidelines, with clear distinctions based on educational levels, and advanced AI capabilities.
The framework will ensure better learning outcomes, uphold academic integrity, and promote responsible use of AI.
arXiv Detail & Related papers (2024-06-07T07:18:42Z) - ROAST: Review-level Opinion Aspect Sentiment Target Joint Detection for ABSA [50.90538760832107]
This research presents a novel task, Review-Level Opinion Aspect Sentiment Target (ROAST)
ROAST seeks to close the gap between sentence-level and text-level ABSA by identifying every ABSA constituent at the review level.
We extend the available datasets to enable ROAST, addressing the drawbacks noted in previous research.
arXiv Detail & Related papers (2024-05-30T17:29:15Z) - The AI Assessment Scale (AIAS) in action: A pilot implementation of GenAI supported assessment [0.0]
The rapid adoption of Generative Artificial Intelligence (GenAI) technologies in higher education has raised concerns about academic integrity, assessment practices, and student learning.
This paper presents the findings of a pilot study conducted at British University Vietnam (BUV) exploring the implementation of the Artificial Intelligence Assessment Scale (AIAS)
The AIAS consists of five levels, ranging from 'No AI' to 'Full AI', enabling educators to design assessments that focus on areas requiring human input and critical thinking.
arXiv Detail & Related papers (2024-03-15T08:00:02Z) - Bringing Generative AI to Adaptive Learning in Education [58.690250000579496]
We shed light on the intersectional studies of generative AI and adaptive learning.
We argue that this union will contribute significantly to the development of the next-stage learning format in education.
arXiv Detail & Related papers (2024-02-02T23:54:51Z) - The AI Assessment Scale (AIAS): A Framework for Ethical Integration of Generative AI in Educational Assessment [0.0]
We outline a practical, simple, and sufficiently comprehensive tool to allow for the integration of GenAI tools into educational assessment.
The AI Assessment Scale (AIAS) empowers educators to select the appropriate level of GenAI usage in assessments.
By adopting a practical, flexible approach, the AIAS can form a much-needed starting point to address the current uncertainty and anxiety regarding GenAI in education.
arXiv Detail & Related papers (2023-12-12T09:08:36Z) - UKP-SQuARE: An Interactive Tool for Teaching Question Answering [61.93372227117229]
The exponential growth of question answering (QA) has made it an indispensable topic in any Natural Language Processing (NLP) course.
We introduce UKP-SQuARE as a platform for QA education.
Students can run, compare, and analyze various QA models from different perspectives.
arXiv Detail & Related papers (2023-05-31T11:29:04Z) - An Experience Report of Executive-Level Artificial Intelligence
Education in the United Arab Emirates [53.04281982845422]
We present an experience report of teaching an AI course to business executives in the United Arab Emirates (UAE)
Rather than focusing only on theoretical and technical aspects, we developed a course that teaches AI with a view to enabling students to understand how to incorporate it into existing business processes.
arXiv Detail & Related papers (2022-02-02T20:59:53Z) - Stakeholder Participation in AI: Beyond "Add Diverse Stakeholders and
Stir" [76.44130385507894]
This paper aims to ground what we dub a 'participatory turn' in AI design by synthesizing existing literature on participation and through empirical analysis of its current practices.
Based on our literature synthesis and empirical research, this paper presents a conceptual framework for analyzing participatory approaches to AI design.
arXiv Detail & Related papers (2021-11-01T17:57:04Z) - Competency Model Approach to AI Literacy: Research-based Path from
Initial Framework to Model [0.0]
Research on AI Literacy could lead to an effective and practical platform for developing these skills.
We propose and advocate for a pathway for developing AI Literacy as a pragmatic and useful tool for AI education.
arXiv Detail & Related papers (2021-08-12T15:42:32Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.