Comprehensive AI Assessment Framework: Enhancing Educational Evaluation with Ethical AI Integration
- URL: http://arxiv.org/abs/2407.16887v1
- Date: Fri, 7 Jun 2024 07:18:42 GMT
- Title: Comprehensive AI Assessment Framework: Enhancing Educational Evaluation with Ethical AI Integration
- Authors: Selçuk Kılınç,
- Abstract summary: This paper presents the Comprehensive AI Assessment Framework (CAIAF), an evolved version of the AI Assessment Scale (AIAS) by Perkins, Furze, Roe, and MacVaugh.
The CAIAF incorporates stringent ethical guidelines, with clear distinctions based on educational levels, and advanced AI capabilities.
The framework will ensure better learning outcomes, uphold academic integrity, and promote responsible use of AI.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The integration of generative artificial intelligence (GenAI) tools into education has been a game-changer for teaching and assessment practices, bringing new opportunities, but also novel challenges which need to be dealt with. This paper presents the Comprehensive AI Assessment Framework (CAIAF), an evolved version of the AI Assessment Scale (AIAS) by Perkins, Furze, Roe, and MacVaugh, targeted toward the ethical integration of AI into educational assessments. This is where the CAIAF differs, as it incorporates stringent ethical guidelines, with clear distinctions based on educational levels, and advanced AI capabilities of real-time interactions and personalized assistance. The framework developed herein has a very intuitive use, mainly through the use of a color gradient that enhances the user-friendliness of the framework. Methodologically, the framework has been developed through the huge support of a thorough literature review and practical insight into the topic, becoming a dynamic tool to be used in different educational settings. The framework will ensure better learning outcomes, uphold academic integrity, and promote responsible use of AI, hence the need for this framework in modern educational practice.
Related papers
- From MOOC to MAIC: Reshaping Online Teaching and Learning through LLM-driven Agents [78.15899922698631]
MAIC (Massive AI-empowered Course) is a new form of online education that leverages LLM-driven multi-agent systems to construct an AI-augmented classroom.
We conduct preliminary experiments at Tsinghua University, one of China's leading universities.
arXiv Detail & Related papers (2024-09-05T13:22:51Z) - The Rise of Artificial Intelligence in Educational Measurement: Opportunities and Ethical Challenges [2.569083526579529]
AI in education raises ethical concerns regarding validity, reliability, transparency, fairness, and equity.
Various stakeholders, including educators, policymakers, and organizations, have developed guidelines to ensure ethical AI use in education.
In this paper, a diverse group of AIME members examines the ethical implications of AI-powered tools in educational measurement.
arXiv Detail & Related papers (2024-06-27T05:28:40Z) - Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
General purpose AI seems to have lowered the barriers for the public to use AI and harness its power.
We introduce PARTICIP-AI, a framework for laypeople to speculate and assess AI use cases and their impacts.
arXiv Detail & Related papers (2024-03-21T19:12:37Z) - Enhancing Instructional Quality: Leveraging Computer-Assisted Textual
Analysis to Generate In-Depth Insights from Educational Artifacts [13.617709093240231]
We examine how artificial intelligence (AI) and machine learning (ML) methods can analyze educational content, teacher discourse, and student responses to foster instructional improvement.
We identify key areas where AI/ML integration offers significant advantages, including teacher coaching, student support, and content development.
This paper emphasizes the importance of aligning AI/ML technologies with pedagogical goals to realize their full potential in educational settings.
arXiv Detail & Related papers (2024-03-06T18:29:18Z) - Bringing Generative AI to Adaptive Learning in Education [58.690250000579496]
We shed light on the intersectional studies of generative AI and adaptive learning.
We argue that this union will contribute significantly to the development of the next-stage learning format in education.
arXiv Detail & Related papers (2024-02-02T23:54:51Z) - The AI Assessment Scale (AIAS): A Framework for Ethical Integration of Generative AI in Educational Assessment [0.0]
We outline a practical, simple, and sufficiently comprehensive tool to allow for the integration of GenAI tools into educational assessment.
The AI Assessment Scale (AIAS) empowers educators to select the appropriate level of GenAI usage in assessments.
By adopting a practical, flexible approach, the AIAS can form a much-needed starting point to address the current uncertainty and anxiety regarding GenAI in education.
arXiv Detail & Related papers (2023-12-12T09:08:36Z) - Multimodality of AI for Education: Towards Artificial General
Intelligence [14.121655991753483]
multimodal artificial intelligence (AI) approaches are paving the way towards the realization of Artificial General Intelligence (AGI) in educational contexts.
This research delves deeply into the key facets of AGI, including cognitive frameworks, advanced knowledge representation, adaptive learning mechanisms, and the integration of diverse multimodal data sources.
The paper also discusses the implications of multimodal AI's role in education, offering insights into future directions and challenges in AGI development.
arXiv Detail & Related papers (2023-12-10T23:32:55Z) - A Transparency Index Framework for AI in Education [1.776308321589895]
The main contribution of this study is that it highlights the importance of transparency in developing AI-powered educational technologies.
We demonstrate how transparency enables the implementation of other ethical AI dimensions in Education like interpretability, accountability, and safety.
arXiv Detail & Related papers (2022-05-09T10:10:47Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
The objective of personalized learning is to design an effective knowledge acquisition track that matches the learner's strengths and bypasses her weaknesses to meet her desired goal.
In recent years, the boost of artificial intelligence (AI) and machine learning (ML) has unfolded novel perspectives to enhance personalized education.
arXiv Detail & Related papers (2021-01-19T12:23:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.