Deterministic multipartite entanglement via fractional state transfer across quantum networks
- URL: http://arxiv.org/abs/2408.01177v2
- Date: Thu, 17 Oct 2024 08:14:52 GMT
- Title: Deterministic multipartite entanglement via fractional state transfer across quantum networks
- Authors: G. F. Peñas, J. -J. García-Ripoll, R. Puebla,
- Abstract summary: We propose a fractional quantum state transfer, in which the excitation of an emitter is partially transmitted through the quantum communication channel.
We show that genuine multipartite entangled states can be faithfully prepared within current experimental platforms.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The generation of entanglement across different nodes in distributed quantum architectures plays a pivotal role for different applications. In particular, deterministic, robust, and fast protocols that prepare genuine multipartite entangled states are highly desirable. In this article, we propose a fractional quantum state transfer, in which the excitation of an emitter is partially transmitted through the quantum communication channel and then absorbed at a spatially separated node. This protocol is based on wavepacket shaping allowing for a fast deterministic generation of Bell states among two quantum registers and $W$ states for a general setting of $N$ qubits, either in a sequential or simultaneous fashion, depending on the topology of the network. By means of detailed numerical simulations, we show that genuine multipartite entangled states can be faithfully prepared within current experimental platforms and discuss the role of the main decoherence sources, qubit dephasing and relaxation, depending on the network topology.
Related papers
- Entanglement distribution based on quantum walk in arbitrary quantum networks [6.37705397840332]
We develop a series of scheme for generating high-dimensional entangled states via quantum walks with multiple coins or single coin.
We also give entanglement distribution schemes on arbitrary quantum networks according to the above theoretical framework.
Our work can serve as a building block for constructing larger and more complex quantum networks.
arXiv Detail & Related papers (2024-07-05T08:26:41Z) - Multi-User Entanglement Distribution in Quantum Networks Using Multipath
Routing [55.2480439325792]
We propose three protocols that increase the entanglement rate of multi-user applications by leveraging multipath routing.
The protocols are evaluated on quantum networks with NISQ constraints, including limited quantum memories and probabilistic entanglement generation.
arXiv Detail & Related papers (2023-03-06T18:06:00Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - A scheme for multipartite entanglement distribution via separable
carriers [68.8204255655161]
We develop a strategy for entanglement distribution via separable carriers that can be applied to any number of network nodes.
We show that our protocol results in multipartite entanglement, while the carrier mediating the process is always in a separable state with respect to the network.
arXiv Detail & Related papers (2022-06-20T10:50:45Z) - Genuinely Multipartite Entanglement vias Shallow Quantum Circuits [0.0]
We prove any genuinely multipartite entanglement on finite-dimensional spaces can be generated by using 2-layer shallow quantum circuit.
We propose a semi-device-independent entanglement model depending on the local connection ability.
Results show new insights for the multipartite entanglement, quantum network, and measurement-based quantum computation.
arXiv Detail & Related papers (2022-04-20T07:41:30Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Quantum map approach to entanglement transfer and generation in spin
chains [0.0]
Quantum information processing protocols are efficiently implemented on spin-$frac12$ networks.
We reformulate widely investigated protocols, such as one-qubit quantum state transfer and two-qubit entanglement distribution, with the quantum map formalism.
arXiv Detail & Related papers (2021-12-04T14:32:26Z) - Realization of a multi-node quantum network of remote solid-state qubits [0.45823749779393547]
We report on the experimental realization of a three-node entanglement-based quantum network.
We achieve real-time communication and feed-forward gate operations across the network.
We capitalize on the novel capabilities of this network to realize two canonical protocols without post-selection.
arXiv Detail & Related papers (2021-02-08T19:00:03Z) - Telecom-heralded entanglement between remote multimode solid-state
quantum memories [55.41644538483948]
Future quantum networks will enable the distribution of entanglement between distant locations and allow applications in quantum communication, quantum sensing and distributed quantum computation.
Here we report the demonstration of heralded entanglement between two spatially separated quantum nodes, where the entanglement is stored in multimode solid-state quantum memories.
We also show that the generated entanglement is robust against loss in the heralding path, and demonstrate temporally multiplexed operation, with 62 temporal modes.
arXiv Detail & Related papers (2021-01-13T14:31:54Z) - Deterministic distribution of multipartite entanglement and steering in
a quantum network by separable states [14.388536745297214]
Einstein-Podolsky-Rosen entanglement and steering play important roles in quantum-enhanced communication protocols.
We experimentally demonstrate the deterministic distribution of two- and three-mode Gaussian entanglement and steering by transmitting separable states in a network consisting of a quantum server and multiple users.
arXiv Detail & Related papers (2021-01-05T09:15:54Z) - Genuine Network Multipartite Entanglement [62.997667081978825]
We argue that a source capable of distributing bipartite entanglement can, by itself, generate genuine $k$-partite entangled states for any $k$.
We provide analytic and numerical witnesses of genuine network entanglement, and we reinterpret many past quantum experiments as demonstrations of this feature.
arXiv Detail & Related papers (2020-02-07T13:26:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.