Genuinely Multipartite Entanglement vias Shallow Quantum Circuits
- URL: http://arxiv.org/abs/2204.09279v2
- Date: Sun, 11 Dec 2022 07:09:45 GMT
- Title: Genuinely Multipartite Entanglement vias Shallow Quantum Circuits
- Authors: Ming-Xing Luo, Shao-Ming Fei
- Abstract summary: We prove any genuinely multipartite entanglement on finite-dimensional spaces can be generated by using 2-layer shallow quantum circuit.
We propose a semi-device-independent entanglement model depending on the local connection ability.
Results show new insights for the multipartite entanglement, quantum network, and measurement-based quantum computation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multipartite entanglement is of important resources for quantum communication
and quantum computation. Our goal in this paper is to characterize general
multipartite entangled states according to shallow quantum circuits. We firstly
prove any genuinely multipartite entanglement on finite-dimensional spaces can
be generated by using 2-layer shallow quantum circuit consisting of two
biseparable quantum channels, which the smallest nontrivial circuit depth in
the shallow quantum circuit model. We further propose a semi-device-independent
entanglement model depending on the local connection ability in the second
layer of quantum circuits. This implies a complete hierarchy of distinguishing
genuinely multipartite entangled states. It shows a completely different
multipartite nonlocality from the quantum network entanglement. These results
show new insights for the multipartite entanglement, quantum network, and
measurement-based quantum computation.
Related papers
- The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - Multipartite Entanglement for Multi-node Quantum Networks [0.0]
Scaling the number of entangled nodes in a quantum network is a challenge with significant implications for quantum computing, clock synchronisation, secure communications, and quantum sensing.
Here, we analyse various schemes that achieve multipartite entanglement between nodes in a single step, bypassing the need for multiple rounds of bipartite entanglement.
We demonstrate that different schemes can produce distinct multipartite entangled states, with varying fidelity and generation rates.
arXiv Detail & Related papers (2024-07-31T20:23:28Z) - Entanglement distribution based on quantum walk in arbitrary quantum networks [6.37705397840332]
We develop a series of scheme for generating high-dimensional entangled states via quantum walks with multiple coins or single coin.
We also give entanglement distribution schemes on arbitrary quantum networks according to the above theoretical framework.
Our work can serve as a building block for constructing larger and more complex quantum networks.
arXiv Detail & Related papers (2024-07-05T08:26:41Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - Quantum walks and entanglement in cavity networks [0.0]
We analyze the quantum properties of multipartite quantum systems, consisting of an arbitrarily large collection of optical cavities with two-level atoms.
We explore quantum walks in such systems and determine the resulting entanglement.
The topology of torus and the non-orientable M"obius strip serve as examples of complex networks we consider.
arXiv Detail & Related papers (2024-04-17T12:46:21Z) - Enhanced quantum state transfer: Circumventing quantum chaotic behavior [35.74056021340496]
We show how to transfer few-particle quantum states in a two-dimensional quantum network.
Our approach paves the way to short-distance quantum communication for connecting distributed quantum processors or registers.
arXiv Detail & Related papers (2024-02-01T19:00:03Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Lee-Yang theory of quantum phase transitions with neural network quantum
states [0.0]
We show that neural network quantum states can be combined with a Lee-Yang theory of quantum phase transitions to predict the critical points of strongly-correlated spin lattices.
Our results provide a starting point for determining the phase diagram of more complex quantum many-body systems.
arXiv Detail & Related papers (2023-01-24T11:10:37Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Entanglement catalysis for quantum states and noisy channels [41.94295877935867]
We investigate properties of entanglement and its role for quantum communication.
For transformations between bipartite pure states, we prove the existence of a universal catalyst.
We further develop methods to estimate the number of singlets which can be established via a noisy quantum channel.
arXiv Detail & Related papers (2022-02-10T18:36:25Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.