Autoencoders in Function Space
- URL: http://arxiv.org/abs/2408.01362v1
- Date: Fri, 2 Aug 2024 16:13:51 GMT
- Title: Autoencoders in Function Space
- Authors: Justin Bunker, Mark Girolami, Hefin Lambley, Andrew M. Stuart, T. J. Sullivan,
- Abstract summary: This paper introduces function-space versions of the autoencoder (FAE) and variational autoencoder (FVAE)
The FAE objective is valid much more broadly, and can be straightforwardly applied to data governed by differential equations.
Pairing these objectives with neural operator architectures, which can be evaluated on any mesh, enables new applications of autoencoders to inpainting, superresolution, and generative modelling of scientific data.
- Score: 5.558412940088621
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autoencoders have found widespread application, in both their original deterministic form and in their variational formulation (VAEs). In scientific applications it is often of interest to consider data that are comprised of functions; the same perspective is useful in image processing. In practice, discretisation (of differential equations arising in the sciences) or pixellation (of images) renders problems finite dimensional, but conceiving first of algorithms that operate on functions, and only then discretising or pixellating, leads to better algorithms that smoothly operate between different levels of discretisation or pixellation. In this paper function-space versions of the autoencoder (FAE) and variational autoencoder (FVAE) are introduced, analysed, and deployed. Well-definedness of the objective function governing VAEs is a subtle issue, even in finite dimension, and more so on function space. The FVAE objective is well defined whenever the data distribution is compatible with the chosen generative model; this happens, for example, when the data arise from a stochastic differential equation. The FAE objective is valid much more broadly, and can be straightforwardly applied to data governed by differential equations. Pairing these objectives with neural operator architectures, which can thus be evaluated on any mesh, enables new applications of autoencoders to inpainting, superresolution, and generative modelling of scientific data.
Related papers
- Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
We present a novel gradient-free algorithm to solve convex optimization problems.
Such problems are encountered in medicine, physics, and machine learning.
We provide convergence guarantees for the proposed algorithm under both types of noise.
arXiv Detail & Related papers (2024-11-21T10:26:17Z) - RGCVAE: Relational Graph Conditioned Variational Autoencoder for
Molecule Design [70.59828655929194]
Deep Graph Variational Autoencoders are among the most powerful machine learning tools with which it is possible to address this problem.
We propose RGCVAE, an efficient and effective Graph Variational Autoencoder based on: (i) an encoding network exploiting a new powerful Graph Isomorphism Network; (ii) a novel probabilistic decoding component.
arXiv Detail & Related papers (2023-05-19T14:23:48Z) - Variational Autoencoding Neural Operators [17.812064311297117]
Unsupervised learning with functional data is an emerging paradigm of machine learning research with applications to computer vision, climate modeling and physical systems.
We present Variational Autoencoding Neural Operators (VANO), a general strategy for making a large class of operator learning architectures act as variational autoencoders.
arXiv Detail & Related papers (2023-02-20T22:34:43Z) - Score-based Diffusion Models in Function Space [140.792362459734]
Diffusion models have recently emerged as a powerful framework for generative modeling.
We introduce a mathematically rigorous framework called Denoising Diffusion Operators (DDOs) for training diffusion models in function space.
We show that the corresponding discretized algorithm generates accurate samples at a fixed cost independent of the data resolution.
arXiv Detail & Related papers (2023-02-14T23:50:53Z) - AutoIP: A United Framework to Integrate Physics into Gaussian Processes [15.108333340471034]
We propose a framework that can integrate all kinds of differential equations into Gaussian processes.
Our method shows improvement upon vanilla GPs in both simulation and several real-world applications.
arXiv Detail & Related papers (2022-02-24T19:02:14Z) - Category-Learning with Context-Augmented Autoencoder [63.05016513788047]
Finding an interpretable non-redundant representation of real-world data is one of the key problems in Machine Learning.
We propose a novel method of using data augmentations when training autoencoders.
We train a Variational Autoencoder in such a way, that it makes transformation outcome predictable by auxiliary network.
arXiv Detail & Related papers (2020-10-10T14:04:44Z) - A Flexible Framework for Designing Trainable Priors with Adaptive
Smoothing and Game Encoding [57.1077544780653]
We introduce a general framework for designing and training neural network layers whose forward passes can be interpreted as solving non-smooth convex optimization problems.
We focus on convex games, solved by local agents represented by the nodes of a graph and interacting through regularization functions.
This approach is appealing for solving imaging problems, as it allows the use of classical image priors within deep models that are trainable end to end.
arXiv Detail & Related papers (2020-06-26T08:34:54Z) - The Random Feature Model for Input-Output Maps between Banach Spaces [6.282068591820945]
The random feature model is a parametric approximation to kernel or regression methods.
We propose a methodology for use of the random feature model as a data-driven surrogate for operators that map an input Banach space to an output Banach space.
arXiv Detail & Related papers (2020-05-20T17:41:40Z) - The data-driven physical-based equations discovery using evolutionary
approach [77.34726150561087]
We describe the algorithm for the mathematical equations discovery from the given observations data.
The algorithm combines genetic programming with the sparse regression.
It could be used for governing analytical equation discovery as well as for partial differential equations (PDE) discovery.
arXiv Detail & Related papers (2020-04-03T17:21:57Z) - Solving inverse-PDE problems with physics-aware neural networks [0.0]
We propose a novel framework to find unknown fields in the context of inverse problems for partial differential equations.
We blend the high expressibility of deep neural networks as universal function estimators with the accuracy and reliability of existing numerical algorithms.
arXiv Detail & Related papers (2020-01-10T18:46:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.