論文の概要: Explaining a probabilistic prediction on the simplex with Shapley compositions
- arxiv url: http://arxiv.org/abs/2408.01382v1
- Date: Fri, 2 Aug 2024 16:40:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-05 12:48:28.931106
- Title: Explaining a probabilistic prediction on the simplex with Shapley compositions
- Title(参考訳): シェープリー合成による単純体上の確率論的予測の解説
- Authors: Paul-Gauthier Noé, Miquel Perelló-Nieto, Jean-François Bonastre, Peter Flach,
- Abstract要約: 我々は,多クラス確率予測を適切に説明するために,シェープリー合成を十分に確立した方法として紹介する。
我々は、シャプリー合成が Aitchison の単純点上の線型性、対称性、効率を満たす唯一の量であることを証明した。
- 参考スコア(独自算出の注目度): 11.009289275721283
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Originating in game theory, Shapley values are widely used for explaining a machine learning model's prediction by quantifying the contribution of each feature's value to the prediction. This requires a scalar prediction as in binary classification, whereas a multiclass probabilistic prediction is a discrete probability distribution, living on a multidimensional simplex. In such a multiclass setting the Shapley values are typically computed separately on each class in a one-vs-rest manner, ignoring the compositional nature of the output distribution. In this paper, we introduce Shapley compositions as a well-founded way to properly explain a multiclass probabilistic prediction, using the Aitchison geometry from compositional data analysis. We prove that the Shapley composition is the unique quantity satisfying linearity, symmetry and efficiency on the Aitchison simplex, extending the corresponding axiomatic properties of the standard Shapley value. We demonstrate this proper multiclass treatment in a range of scenarios.
- Abstract(参考訳): ゲーム理論から派生したShapley値は、各特徴値の予測への寄与を定量化し、機械学習モデルの予測を説明するために広く利用されている。
これは二項分類のようにスカラー予測を必要とするが、多重クラス確率予測は離散確率分布であり、多次元の単純体上に存在する。
このようなマルチクラス設定では、Shapley値は通常、1-vs-rest方式で各クラスで別々に計算され、出力分布の構成的性質を無視する。
本稿では,合成データ解析から得られたアッチソン幾何を用いて,多クラス確率予測を適切に記述する手法として,シェープリー合成を紹介する。
我々は、シャプリー合成が Aitchison simplex 上の線型性、対称性、効率を満足する唯一の量であることを証明し、標準シャプリー値の対応する公理的性質を拡張した。
様々なシナリオでこの適切なマルチクラス処理を実演する。
関連論文リスト
- Improving the Sampling Strategy in KernelSHAP [0.8057006406834466]
KernelSHAPフレームワークは、重み付けされた条件付き期待値のサンプルサブセットを用いて、Shapley値の近似を可能にする。
本稿では,現在最先端戦略における重みの分散を低減するための安定化手法,サンプルサブセットに基づいてShapleyカーネル重みを補正する新しい重み付け方式,および重要なサブセットを包含して修正されたShapleyカーネル重みと統合する簡単な戦略を提案する。
論文 参考訳(メタデータ) (2024-10-07T10:02:31Z) - Probabilistic Contrastive Learning for Long-Tailed Visual Recognition [78.70453964041718]
細長い分布は、少数の少数派が限られた数のサンプルを含む実世界のデータにしばしば現れる。
近年の研究では、教師付きコントラスト学習がデータ不均衡を緩和する有望な可能性を示していることが明らかになっている。
本稿では,特徴空間の各クラスからのサンプルデータ分布を推定する確率論的コントラスト学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-03-11T13:44:49Z) - Efficient Shapley Values Estimation by Amortization for Text
Classification [66.7725354593271]
我々は,各入力特徴のシェープ値を直接予測し,追加のモデル評価を行なわずに補正モデルを開発する。
2つのテキスト分類データセットの実験結果から、アモルタイズされたモデルでは、Shapley Valuesを最大60倍のスピードアップで正確に見積もっている。
論文 参考訳(メタデータ) (2023-05-31T16:19:13Z) - Probabilistic Conformal Prediction Using Conditional Random Samples [73.26753677005331]
PCPは、不連続な予測セットによって対象変数を推定する予測推論アルゴリズムである。
効率的で、明示的または暗黙的な条件生成モデルと互換性がある。
論文 参考訳(メタデータ) (2022-06-14T03:58:03Z) - Exact Shapley Values for Local and Model-True Explanations of Decision
Tree Ensembles [0.0]
決定木アンサンブルの説明にShapley値を適用することを検討する。
本稿では,無作為林に適応し,決定木を増強できる,Shapley値に基づく特徴属性に対する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2021-12-16T20:16:02Z) - Is Shapley Explanation for a model unique? [0.0]
特徴の分布とShapley値の関係について検討する。
我々の評価では、特定の特徴に対するShapleyの値は、期待値だけでなく、分散のような他の瞬間にも依存する。
これはモデルの結果(Probability/Log-odds/binary decision、recept/rejectなど)によって異なり、従ってモデルアプリケーションによって異なります。
論文 参考訳(メタデータ) (2021-11-23T15:31:46Z) - groupShapley: Efficient prediction explanation with Shapley values for
feature groups [2.320417845168326]
シェープ価値は、機械学習モデルから予測を説明するための最も適切で理論的に健全なフレームワークの1つとして、自らを確立している。
Shapley値の主な欠点は、その計算複雑性が入力機能の数で指数関数的に増加することである。
本稿では、上記のボトルネックを扱うための概念的にシンプルなアプローチであるgroupShapleyを紹介する。
論文 参考訳(メタデータ) (2021-06-23T08:16:14Z) - An Imprecise SHAP as a Tool for Explaining the Class Probability
Distributions under Limited Training Data [5.8010446129208155]
クラス確率分布が不正確で分布の集合で表される場合に、不正確なSHAPを提案する。
不正確なSHAPの背後にある最初のアイデアは、機能の限界貢献を計算するための新しいアプローチである。
第二のアイデアは、間隔値シャプリー値の計算と縮小に対する一般的なアプローチを考える試みである。
論文 参考訳(メタデータ) (2021-06-16T20:30:26Z) - Video Prediction via Example Guidance [156.08546987158616]
ビデオ予測タスクでは、将来のコンテンツとダイナミクスのマルチモーダルな性質を捉えることが大きな課題である。
本研究では,有効な将来状態の予測を効果的に行うための,シンプルで効果的なフレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-03T14:57:24Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
[1]では、ランダムに投影された線形判別式のアンサンブルを用いてデータセットを分類する。
我々は,計算コストのかかるクロスバリデーション推定器の代替として,誤分類確率の一貫した推定器を開発する。
また、実データと合成データの両方で投影次元を調整するための推定器の使用を実証する。
論文 参考訳(メタデータ) (2020-04-17T12:47:04Z) - CatBoostLSS -- An extension of CatBoost to probabilistic forecasting [91.3755431537592]
本稿では,不可変応答変数の条件分布全体を予測する新しいフレームワークを提案する。
CatBoostLSSは条件平均のみではなくパラメトリック分布のすべてのモーメントをモデル化する。
提案手法の利点を実証するシミュレーション研究と実世界の実例を共に提示する。
論文 参考訳(メタデータ) (2020-01-04T15:42:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。