Error correction of transversal CNOT gates for scalable surface code computation
- URL: http://arxiv.org/abs/2408.01393v2
- Date: Tue, 17 Sep 2024 13:23:53 GMT
- Title: Error correction of transversal CNOT gates for scalable surface code computation
- Authors: Kaavya Sahay, Yingjia Lin, Shilin Huang, Kenneth R. Brown, Shruti Puri,
- Abstract summary: A controlled-NOT (tCNOT) gate introduces correlated errors across the code blocks.
We examine and benchmark the performance of three different decoding strategies for the tC for scalable, fault-tolerant quantum computation.
- Score: 0.37282630026096597
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent experimental advances have made it possible to implement logical multi-qubit transversal gates on surface codes in a multitude of platforms. A transversal controlled-NOT (tCNOT) gate on two surface codes introduces correlated errors across the code blocks and thus requires modified decoding strategies compared to established methods of decoding surface code quantum memory (SCQM) or lattice surgery operations. In this work, we examine and benchmark the performance of three different decoding strategies for the tCNOT for scalable, fault-tolerant quantum computation. In particular, we present a low-complexity decoder based on minimum-weight perfect matching (MWPM) that achieves the same threshold as the SCQM MWPM decoder. We extend our analysis with a study of tailored decoding of a transversal teleportation circuit, along with a comparison between the performance of lattice surgery and transversal operations under Pauli and erasure noise models. Our investigation works towards systematic estimation of the cost of implementing large-scale quantum algorithms based on transversal gates in the surface code.
Related papers
- Accelerating Error Correction Code Transformers [56.75773430667148]
We introduce a novel acceleration method for transformer-based decoders.
We achieve a 90% compression ratio and reduce arithmetic operation energy consumption by at least 224 times on modern hardware.
arXiv Detail & Related papers (2024-10-08T11:07:55Z) - Efficient fault-tolerant code switching via one-way transversal CNOT gates [0.0]
We present a code scheme that respects the constraints of FT circuit design by only making use of switching gates.
We analyze application of the scheme to low-distance color codes, which are suitable for operation in existing quantum processors.
We discuss how the scheme can be implemented with a large degree of parallelization, provided that logical auxiliary qubits can be prepared reliably enough.
arXiv Detail & Related papers (2024-09-20T12:54:47Z) - Algorithmic Fault Tolerance for Fast Quantum Computing [37.448838730002905]
We show that fault-tolerant logical operations can be performed with constant time overhead for a broad class of quantum codes.
We prove that the deviation from the ideal measurement result distribution can be made exponentially small in the code distance.
Our work sheds new light on the theory of fault tolerance, potentially reducing the space-time cost of practical fault-tolerant quantum computation by orders of magnitude.
arXiv Detail & Related papers (2024-06-25T15:43:25Z) - A Fast and Adaptable Algorithm for Optimal Multi-Qubit Pathfinding in Quantum Circuit Compilation [0.0]
This work focuses on multi-qubit pathfinding as a critical subroutine within the quantum circuit compilation mapping problem.
We introduce an algorithm, modelled using binary integer linear programming, that navigates qubits on quantum hardware optimally with respect to circuit SWAP-gate depth.
We have benchmarked the algorithm across a variety of quantum hardware layouts, assessing properties such as computational runtimes, solution SWAP depths, and accumulated SWAP-gate error rates.
arXiv Detail & Related papers (2024-05-29T05:59:15Z) - Toward a 2D Local Implementation of Quantum LDPC Codes [1.1936126505067601]
Geometric locality is an important theoretical and practical factor for quantum low-density parity-check (qLDPC) codes.
We present an error correction protocol built on a bilayer architecture that aims to reduce operational overheads when restricted to 2D local gates.
arXiv Detail & Related papers (2024-04-26T19:48:07Z) - Comparative study of quantum error correction strategies for the
heavy-hexagonal lattice [44.99833362998488]
Topological quantum error correction is a milestone in the scaling roadmap of quantum computers.
The square-lattice surface code has become the workhorse to address this challenge.
In some platforms, however, the connectivities are kept even lower in order to minimise gate errors.
arXiv Detail & Related papers (2024-02-03T15:28:27Z) - Testing the Accuracy of Surface Code Decoders [55.616364225463066]
Large-scale, fault-tolerant quantum computations will be enabled by quantum error-correcting codes (QECC)
This work presents the first systematic technique to test the accuracy and effectiveness of different QECC decoding schemes.
arXiv Detail & Related papers (2023-11-21T10:22:08Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
We introduce decoders that are both fast and accurate, and can be used with a wide class of quantum error correction codes.
Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code.
arXiv Detail & Related papers (2022-03-09T18:48:54Z) - Cellular automaton decoders for topological quantum codes with noisy
measurements and beyond [68.8204255655161]
We propose an error correction procedure based on a cellular automaton, the sweep rule, which is applicable to a broad range of codes beyond topological quantum codes.
For simplicity, we focus on the three-dimensional (3D) toric code on the rhombic dodecahedral lattice with boundaries and prove that the resulting local decoder has a non-zero error threshold.
We find that this error correction procedure is remarkably robust against measurement errors and is also essentially insensitive to the details of the lattice and noise model.
arXiv Detail & Related papers (2020-04-15T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.