論文の概要: Automating Knowledge Discovery from Scientific Literature via LLMs: A Dual-Agent Approach with Progressive Ontology Prompting
- arxiv url: http://arxiv.org/abs/2409.00054v1
- Date: Tue, 20 Aug 2024 16:42:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-09-08 15:31:02.394198
- Title: Automating Knowledge Discovery from Scientific Literature via LLMs: A Dual-Agent Approach with Progressive Ontology Prompting
- Title(参考訳): LLMによる科学文献からの知識発見の自動化:進行性オントロジープロンプティングによる2段階的アプローチ
- Authors: Yuting Hu, Dancheng Liu, Qingyun Wang, Charles Yu, Heng Ji, Jinjun Xiong,
- Abstract要約: LLM-Duoという,プログレッシブプロンプトアルゴリズムとデュアルエージェントシステムを組み合わせた,大規模言語モデル(LLM)に基づく新しいフレームワークを提案する。
言語治療領域における64,177論文からの2,421件の介入を同定した。
- 参考スコア(独自算出の注目度): 59.97247234955861
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To address the challenge of automating knowledge discovery from a vast volume of literature, in this paper, we introduce a novel framework based on large language models (LLMs) that combines a progressive ontology prompting (POP) algorithm with a dual-agent system, named LLM-Duo, designed to enhance the automation of knowledge extraction from scientific articles. The POP algorithm utilizes a prioritized breadth-first search (BFS) across a predefined ontology to generate structured prompt templates and action orders, thereby guiding LLMs to discover knowledge in an automatic manner. Additionally, our LLM-Duo employs two specialized LLM agents: an explorer and an evaluator. These two agents work collaboratively and adversarially to enhance the reliability of the discovery and annotation processes. Experiments demonstrate that our method outperforms advanced baselines, enabling more accurate and complete annotations. To validate the effectiveness of our method in real-world scenarios, we employ our method in a case study of speech-language intervention discovery. Our method identifies 2,421 interventions from 64,177 research articles in the speech-language therapy domain. We curate these findings into a publicly accessible intervention knowledge base that holds significant potential to benefit the speech-language therapy community.
- Abstract(参考訳): 本稿では,大規模言語モデル(LLM)に基づく新しいフレームワークを提案する。このフレームワークは,POPアルゴリズムとLLM-Duoという2元エージェントシステムを組み合わせて,学術論文からの知識抽出の自動化を促進する。
POPアルゴリズムは、事前定義されたオントロジーをまたいだ優先順位付き幅優先探索(BFS)を用いて、構造化されたプロンプトテンプレートとアクションオーダを生成する。
さらに, LLM-Duoには, エクスプローラーと評価器という, 特殊なLSMエージェントが2つ採用されている。
これら2つのエージェントは、発見およびアノテーションプロセスの信頼性を高めるために、協調的かつ逆向きに働く。
実験により、我々のメソッドは高度なベースラインよりも優れており、より正確で完全なアノテーションを可能にします。
実世界のシナリオにおける本手法の有効性を検証するため,言語介入発見の事例研究に本手法を適用した。
言語治療領域における64,177論文からの2,421件の介入を同定した。
本研究は,これらの知見を,言語療法コミュニティの利益に寄与する大きな可能性を秘めた,広くアクセス可能な介入知識基盤にキュレートする。
関連論文リスト
- A Survey of Frontiers in LLM Reasoning: Inference Scaling, Learning to Reason, and Agentic Systems [93.8285345915925]
推論(Reasoning)は、論理的推論、問題解決、意思決定を可能にする基本的な認知プロセスである。
大規模言語モデル(LLM)の急速な進歩により、推論は高度なAIシステムを区別する重要な能力として浮上した。
我々は,(1)推論が達成される段階を定義するレジーム,(2)推論プロセスに関与するコンポーネントを決定するアーキテクチャの2つの側面に沿って既存の手法を分類する。
論文 参考訳(メタデータ) (2025-04-12T01:27:49Z) - R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement Learning [87.30285670315334]
textbfR1-Searcherは、大規模言語モデルの検索能力を高めるために設計された、2段階の結果に基づく新しいRLアプローチである。
本フレームワークは, コールドスタート時に, プロセス報酬や蒸留を必要とせず, RLのみに依存している。
提案手法は, クローズドソースGPT-4o-miniと比較して, 従来の強力なRAG法よりも有意に優れていた。
論文 参考訳(メタデータ) (2025-03-07T17:14:44Z) - Injecting Domain-Specific Knowledge into Large Language Models: A Comprehensive Survey [39.82566660592583]
大規模言語モデル(LLM)は、自然言語理解、テキスト要約、機械翻訳といった様々なタスクにおいて顕著な成功を収めている。
彼らの汎用的な性質は、医療、化学、法的な分析といった専門的な知識を必要とするドメイン固有のアプリケーションにおいて、その効果を制限していることが多い。
これを解決するために、研究者はドメイン固有の知識を統合することでLLMを強化する様々な方法を模索してきた。
論文 参考訳(メタデータ) (2025-02-15T07:43:43Z) - SciPIP: An LLM-based Scientific Paper Idea Proposer [30.670219064905677]
SciPIPは,文献検索とアイデア生成の両面での改善を通じて,科学的アイデアの提案を強化するために設計された,革新的なフレームワークである。
自然言語処理やコンピュータビジョンなど,さまざまな領域で実施した実験では,SciPIPが革新的で有用なアイデアを多数生成する能力を示した。
論文 参考訳(メタデータ) (2024-10-30T16:18:22Z) - Enriching Ontologies with Disjointness Axioms using Large Language Models [5.355177558868206]
大型モデル(LLM)は、クラス不整合公理を識別し、主張することで一貫性を提供する。
本研究の目的は,LLMに埋め込まれた暗黙の知識を活用して,存在論的不一致を分類することである。
以上の結果から, LLMは効果的なプロンプト戦略によって導かれることにより, 不整合性関係を確実に識別できることが示唆された。
論文 参考訳(メタデータ) (2024-10-04T09:00:06Z) - Knowledge Navigator: LLM-guided Browsing Framework for Exploratory Search in Scientific Literature [48.572336666741194]
本稿では,探索探索能力の向上を目的とした知識ナビゲータを提案する。
検索された文書を、名前と記述の科学トピックとサブトピックの、ナビゲート可能な2段階の階層に整理する。
論文 参考訳(メタデータ) (2024-08-28T14:48:37Z) - A Quick, trustworthy spectral knowledge Q&A system leveraging retrieval-augmented generation on LLM [0.0]
大規模言語モデル(LLM)は、自然言語処理(NLP)タスクにおいて、一般領域内で大きな成功を収めている。
本稿では,SDAAP(Spectral Detection and Analysis Based Paper)データセットを紹介する。
また、SDAAPデータセットに基づく自動Q&Aフレームワークを設計し、関連する知識を検索し、高品質な応答を生成する。
論文 参考訳(メタデータ) (2024-08-21T12:09:37Z) - Efficient Prompting Methods for Large Language Models: A Survey [50.171011917404485]
プロンプティングは、特定の自然言語処理タスクに大規模言語モデル(LLM)を適用するための主流パラダイムとなっている。
このアプローチは、LLMの振る舞いをガイドし、制御するために、モデル推論と人間の努力のさらなる計算負担をもたらす。
本稿では, 今後の研究の方向性を明らかにするため, 促進, 効率的な促進のための進歩を概説する。
論文 参考訳(メタデータ) (2024-04-01T12:19:08Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
大規模言語モデル(LLM)は、主に様々なテキスト理解および生成タスクにおける全体的なパフォーマンスによって評価される。
FAC$2$E, FAC$2$Eについて述べる。
論文 参考訳(メタデータ) (2024-02-29T21:05:37Z) - Automating Knowledge Acquisition for Content-Centric Cognitive Agents
Using LLMs [0.0]
本稿では,知的エージェントのセマンティックレキシコンにおける新たなエントリの自動学習を支援するために,大規模言語モデル(LLM)技術を利用するシステムについて述べる。
このプロセスは、既存の非トイ辞書と、意味の形式的、存在論的に接地された表現を自然言語文に変換する自然言語生成装置によってブートストラップされる。
論文 参考訳(メタデータ) (2023-12-27T02:31:51Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
オープン情報抽出(OIE)タスクは、構造化されていないテキストから構造化された事実を抽出することを目的としている。
一般的なタスク解決手段としてChatGPTのような大きな言語モデル(LLM)の可能性にもかかわらず、OIEタスクの最先端(教師付き)メソッドは遅れている。
論文 参考訳(メタデータ) (2023-09-07T01:35:24Z) - LLMs4OL: Large Language Models for Ontology Learning [0.0]
大規模言語モデル(LLM)をオントロジー学習(OL)に用いるLLMs4OLアプローチを提案する。
LLMは自然言語処理の大幅な進歩を示し、異なる知識領域における複雑な言語パターンをキャプチャする能力を示している。
評価には、WordNetにおける語彙的知識、GeoNamesにおける地理的知識、UMLSにおける医学知識など、様々なオントロジ的知識のジャンルが含まれる。
論文 参考訳(メタデータ) (2023-07-31T13:27:21Z) - Red Teaming Language Model Detectors with Language Models [114.36392560711022]
大規模言語モデル(LLM)は、悪意のあるユーザによって悪用された場合、重大な安全性と倫理的リスクをもたらす。
近年,LLM生成テキストを検出し,LLMを保護するアルゴリズムが提案されている。
1) LLMの出力中の特定の単語を, 文脈が与えられたシノニムに置き換えること, 2) 生成者の書き方を変更するための指示プロンプトを自動で検索すること,である。
論文 参考訳(メタデータ) (2023-05-31T10:08:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。