HIVE: HIerarchical Volume Encoding for Neural Implicit Surface Reconstruction
- URL: http://arxiv.org/abs/2408.01677v1
- Date: Sat, 3 Aug 2024 06:34:20 GMT
- Title: HIVE: HIerarchical Volume Encoding for Neural Implicit Surface Reconstruction
- Authors: Xiaodong Gu, Weihao Yuan, Heng Li, Zilong Dong, Ping Tan,
- Abstract summary: We introduce a volume encoding to explicitly encode the spatial information.
High-resolution volumes capture the high-frequency geometry details.
Low-resolution volumes enforce the spatial consistency to keep the shape smooth.
This hierarchical volume encoding could be appended to any implicit surface reconstruction method as a plug-and-play module.
- Score: 37.00102816748563
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural implicit surface reconstruction has become a new trend in reconstructing a detailed 3D shape from images. In previous methods, however, the 3D scene is only encoded by the MLPs which do not have an explicit 3D structure. To better represent 3D shapes, we introduce a volume encoding to explicitly encode the spatial information. We further design hierarchical volumes to encode the scene structures in multiple scales. The high-resolution volumes capture the high-frequency geometry details since spatially varying features could be learned from different 3D points, while the low-resolution volumes enforce the spatial consistency to keep the shape smooth since adjacent locations possess the same low-resolution feature. In addition, we adopt a sparse structure to reduce the memory consumption at high-resolution volumes, and two regularization terms to enhance results smoothness. This hierarchical volume encoding could be appended to any implicit surface reconstruction method as a plug-and-play module, and can generate a smooth and clean reconstruction with more details. Superior performance is demonstrated in DTU, EPFL, and BlendedMVS datasets with significant improvement on the standard metrics.
Related papers
- Optimizing 3D Geometry Reconstruction from Implicit Neural Representations [2.3940819037450987]
Implicit neural representations have emerged as a powerful tool in learning 3D geometry.
We present a novel approach that both reduces computational expenses and enhances the capture of fine details.
arXiv Detail & Related papers (2024-10-16T16:36:23Z) - SAGS: Structure-Aware 3D Gaussian Splatting [53.6730827668389]
We propose a structure-aware Gaussian Splatting method (SAGS) that implicitly encodes the geometry of the scene.
SAGS reflects to state-of-the-art rendering performance and reduced storage requirements on benchmark novel-view synthesis datasets.
arXiv Detail & Related papers (2024-04-29T23:26:30Z) - Neural Progressive Meshes [54.52990060976026]
We propose a method to transmit 3D meshes with a shared learned generative space.
We learn this space using a subdivision-based encoder-decoder architecture trained in advance on a large collection of surfaces.
We evaluate our method on a diverse set of complex 3D shapes and demonstrate that it outperforms baselines in terms of compression ratio and reconstruction quality.
arXiv Detail & Related papers (2023-08-10T17:58:02Z) - Incremental Dense Reconstruction from Monocular Video with Guided Sparse
Feature Volume Fusion [23.984073189849024]
This letter proposes a real-time feature volume-based dense reconstruction method that predicts TSDF values from a novel sparsified deep feature volume.
An uncertainty-aware multi-view stereo network is leveraged to infer initial voxel locations of the physical surface in a sparse feature volume.
Our method is shown to produce more complete reconstructions with finer detail in many cases.
arXiv Detail & Related papers (2023-05-24T09:06:01Z) - FineRecon: Depth-aware Feed-forward Network for Detailed 3D
Reconstruction [13.157400338544177]
Recent works on 3D reconstruction from posed images have demonstrated that direct inference of scene-level 3D geometry is feasible using deep neural networks.
We propose three effective solutions for improving the fidelity of inference-based 3D reconstructions.
Our method, FineRecon, produces smooth and highly accurate reconstructions, showing significant improvements across multiple depth and 3D reconstruction metrics.
arXiv Detail & Related papers (2023-04-04T02:50:29Z) - Recovering Fine Details for Neural Implicit Surface Reconstruction [3.9702081347126943]
We present D-NeuS, a volume rendering neural implicit surface reconstruction method capable to recover fine geometry details.
We impose multi-view feature consistency on the surface points, derived by interpolating SDF zero-crossings from sampled points along rays.
Our method reconstructs high-accuracy surfaces with details, and outperforms the state of the art.
arXiv Detail & Related papers (2022-11-21T10:06:09Z) - 3D Shape Reconstruction from 2D Images with Disentangled Attribute Flow [61.62796058294777]
Reconstructing 3D shape from a single 2D image is a challenging task.
Most of the previous methods still struggle to extract semantic attributes for 3D reconstruction task.
We propose 3DAttriFlow to disentangle and extract semantic attributes through different semantic levels in the input images.
arXiv Detail & Related papers (2022-03-29T02:03:31Z) - Deep Marching Tetrahedra: a Hybrid Representation for High-Resolution 3D
Shape Synthesis [90.26556260531707]
DMTet is a conditional generative model that can synthesize high-resolution 3D shapes using simple user guides such as coarse voxels.
Unlike deep 3D generative models that directly generate explicit representations such as meshes, our model can synthesize shapes with arbitrary topology.
arXiv Detail & Related papers (2021-11-08T05:29:35Z) - Volume Rendering of Neural Implicit Surfaces [57.802056954935495]
This paper aims to improve geometry representation and reconstruction in neural volume rendering.
We achieve that by modeling the volume density as a function of the geometry.
Applying this new density representation to challenging scene multiview datasets produced high quality geometry reconstructions.
arXiv Detail & Related papers (2021-06-22T20:23:16Z) - Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D
Shapes [77.6741486264257]
We introduce an efficient neural representation that, for the first time, enables real-time rendering of high-fidelity neural SDFs.
We show that our representation is 2-3 orders of magnitude more efficient in terms of rendering speed compared to previous works.
arXiv Detail & Related papers (2021-01-26T18:50:22Z) - A Simple and Scalable Shape Representation for 3D Reconstruction [22.826897662839357]
We show that we can obtain high quality 3D reconstruction using a linear decoder, obtained from principal component analysis on the signed distance function (SDF) of the surface.
This approach allows easily scaling to larger resolutions.
arXiv Detail & Related papers (2020-05-10T10:22:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.