Controllable Unlearning for Image-to-Image Generative Models via $\varepsilon$-Constrained Optimization
- URL: http://arxiv.org/abs/2408.01689v2
- Date: Sat, 14 Sep 2024 10:11:25 GMT
- Title: Controllable Unlearning for Image-to-Image Generative Models via $\varepsilon$-Constrained Optimization
- Authors: Xiaohua Feng, Chaochao Chen, Yuyuan Li, Li Zhang,
- Abstract summary: We study the machine unlearning problem in Image-to-Image (I2I) generative models.
Previous studies mainly treat it as a single objective optimization problem, offering a solitary solution.
We propose a controllable unlearning framework that uses a control coefficient $varepsilon$ to control the trade-off.
- Score: 12.627103884294476
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While generative models have made significant advancements in recent years, they also raise concerns such as privacy breaches and biases. Machine unlearning has emerged as a viable solution, aiming to remove specific training data, e.g., containing private information and bias, from models. In this paper, we study the machine unlearning problem in Image-to-Image (I2I) generative models. Previous studies mainly treat it as a single objective optimization problem, offering a solitary solution, thereby neglecting the varied user expectations towards the trade-off between complete unlearning and model utility. To address this issue, we propose a controllable unlearning framework that uses a control coefficient $\varepsilon$ to control the trade-off. We reformulate the I2I generative model unlearning problem into a $\varepsilon$-constrained optimization problem and solve it with a gradient-based method to find optimal solutions for unlearning boundaries. These boundaries define the valid range for the control coefficient. Within this range, every yielded solution is theoretically guaranteed with Pareto optimality. We also analyze the convergence rate of our framework under various control functions. Extensive experiments on two benchmark datasets across three mainstream I2I models demonstrate the effectiveness of our controllable unlearning framework.
Related papers
- Towards Efficient Pareto Set Approximation via Mixture of Experts Based Model Fusion [53.33473557562837]
Solving multi-objective optimization problems for large deep neural networks is a challenging task due to the complexity of the loss landscape and the expensive computational cost.
We propose a practical and scalable approach to solve this problem via mixture of experts (MoE) based model fusion.
By ensembling the weights of specialized single-task models, the MoE module can effectively capture the trade-offs between multiple objectives.
arXiv Detail & Related papers (2024-06-14T07:16:18Z) - Model Ensembling for Constrained Optimization [7.4351710906830375]
We consider a setting in which we wish to ensemble models for multidimensional output predictions that are in turn used for downstream optimization.
More precisely, we imagine we are given a number of models mapping a state space to multidimensional real-valued predictions.
These predictions form the coefficients of a linear objective that we would like to optimize under specified constraints.
We apply multicalibration techniques that lead to two provably efficient and convergent algorithms.
arXiv Detail & Related papers (2024-05-27T01:48:07Z) - Learning Constrained Optimization with Deep Augmented Lagrangian Methods [54.22290715244502]
A machine learning (ML) model is trained to emulate a constrained optimization solver.
This paper proposes an alternative approach, in which the ML model is trained to predict dual solution estimates directly.
It enables an end-to-end training scheme is which the dual objective is as a loss function, and solution estimates toward primal feasibility, emulating a Dual Ascent method.
arXiv Detail & Related papers (2024-03-06T04:43:22Z) - Deep autoregressive density nets vs neural ensembles for model-based
offline reinforcement learning [2.9158689853305693]
We consider a model-based reinforcement learning algorithm that infers the system dynamics from the available data and performs policy optimization on imaginary model rollouts.
This approach is vulnerable to exploiting model errors which can lead to catastrophic failures on the real system.
We show that better performance can be obtained with a single well-calibrated autoregressive model on the D4RL benchmark.
arXiv Detail & Related papers (2024-02-05T10:18:15Z) - A Lagrangian Duality Approach to Active Learning [119.36233726867992]
We consider the batch active learning problem, where only a subset of the training data is labeled.
We formulate the learning problem using constrained optimization, where each constraint bounds the performance of the model on labeled samples.
We show, via numerical experiments, that our proposed approach performs similarly to or better than state-of-the-art active learning methods.
arXiv Detail & Related papers (2022-02-08T19:18:49Z) - Data Summarization via Bilevel Optimization [48.89977988203108]
A simple yet powerful approach is to operate on small subsets of data.
In this work, we propose a generic coreset framework that formulates the coreset selection as a cardinality-constrained bilevel optimization problem.
arXiv Detail & Related papers (2021-09-26T09:08:38Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
We argue for the use of neural generative models to characterize the worst-case distribution.
This approach poses a number of implementation and optimization challenges.
We find that the proposed approach yields models that are more robust than comparable baselines.
arXiv Detail & Related papers (2021-03-18T14:26:26Z) - Sufficiently Accurate Model Learning for Planning [119.80502738709937]
This paper introduces the constrained Sufficiently Accurate model learning approach.
It provides examples of such problems, and presents a theorem on how close some approximate solutions can be.
The approximate solution quality will depend on the function parameterization, loss and constraint function smoothness, and the number of samples in model learning.
arXiv Detail & Related papers (2021-02-11T16:27:31Z) - Robust-Adaptive Control of Linear Systems: beyond Quadratic Costs [14.309243378538012]
We consider the problem of robust and adaptive model predictive control (MPC) of a linear system.
We provide the first end-to-end suboptimal tractity analysis for this setting.
arXiv Detail & Related papers (2020-02-25T12:24:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.