論文の概要: Intuitionistic Fuzzy Generalized Eigenvalue Proximal Support Vector Machine
- arxiv url: http://arxiv.org/abs/2408.01713v1
- Date: Sat, 3 Aug 2024 08:49:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 18:51:05.648845
- Title: Intuitionistic Fuzzy Generalized Eigenvalue Proximal Support Vector Machine
- Title(参考訳): 直観的ファジィ一般化固有値支援ベクトルマシン
- Authors: A. Quadir, M. A. Ganaie, M. Tanveer,
- Abstract要約: 汎用固有値近位サポートベクトルマシン (GEPSVM) は、その単純なアーキテクチャ、高速実行、可読性性能により、広く注目を集めている。
直観的ファジィ一般化固有値近位支持ベクトルマシン(IF-GEPSVM)を提案する。
提案したIF-GEPSVMは、カーネル関数を用いて、その位置と高次元特徴空間の周囲に基づいて、各トレーニングサンプルに直観的ファジィスコアを割り当てる。
- 参考スコア(独自算出の注目度): 4.069144210024564
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generalized eigenvalue proximal support vector machine (GEPSVM) has attracted widespread attention due to its simple architecture, rapid execution, and commendable performance. GEPSVM gives equal significance to all samples, thereby diminishing its robustness and efficacy when confronted with real-world datasets containing noise and outliers. In order to reduce the impact of noises and outliers, we propose a novel intuitionistic fuzzy generalized eigenvalue proximal support vector machine (IF-GEPSVM). The proposed IF-GEPSVM assigns the intuitionistic fuzzy score to each training sample based on its location and surroundings in the high-dimensional feature space by using a kernel function. The solution of the IF-GEPSVM optimization problem is obtained by solving a generalized eigenvalue problem. Further, we propose an intuitionistic fuzzy improved GEPSVM (IF-IGEPSVM) by solving the standard eigenvalue decomposition resulting in simpler optimization problems with less computation cost which leads to an efficient intuitionistic fuzzy-based model. We conduct a comprehensive evaluation of the proposed IF-GEPSVM and IF-IGEPSVM models on UCI and KEEL datasets. Moreover, to evaluate the robustness of the proposed IF-GEPSVM and IF-IGEPSVM models, label noise is introduced into some UCI and KEEL datasets. The experimental findings showcase the superior generalization performance of the proposed models when compared to the existing baseline models, both with and without label noise. Our experimental results, supported by rigorous statistical analyses, confirm the superior generalization abilities of the proposed IF-GEPSVM and IF-IGEPSVM models over the baseline models. Furthermore, we implement the proposed IF-GEPSVM and IF-IGEPSVM models on the USPS recognition dataset, yielding promising results that underscore the models' effectiveness in practical and real-world applications.
- Abstract(参考訳): 汎用固有値近位サポートベクトルマシン (GEPSVM) は、その単純なアーキテクチャ、高速実行、可読性性能により、広く注目を集めている。
GEPSVMはすべてのサンプルに等しく重要であり、ノイズや外れ値を含む実世界のデータセットと対面した場合、その堅牢性と有効性が低下する。
雑音や外乱の影響を低減するため,新しい直観的ファジィ一般化固有値支援ベクトルマシン (IF-GEPSVM) を提案する。
提案したIF-GEPSVMは、カーネル関数を用いて、その位置と高次元特徴空間の周囲に基づいて、各トレーニングサンプルに直観的ファジィスコアを割り当てる。
IF-GEPSVM最適化問題の解は一般化固有値問題を解くことによって得られる。
さらに,従来の固有値分解を解き,計算コストを低減し,効率的な直観的ファジィモデルを実現することにより,直観的ファジィ改善GEPSVM(IF-IGEPSVM)を提案する。
提案したIF-GEPSVM と IF-IGEPSVM モデルを UCI および KEEL データセット上で包括的に評価する。
さらに、提案したIF-GEPSVMとIF-IGEPSVMモデルの堅牢性を評価するために、いくつかのUCIおよびKEELデータセットにラベルノイズを導入している。
実験結果から,既存のベースラインモデルと比較した場合,ラベルノイズを伴わない場合と比較して,提案モデルの方が優れた一般化性能を示した。
厳密な統計解析によって得られた実験結果から,提案したIF-GEPSVMおよびIF-IGEPSVMモデルのベースラインモデルよりも優れた一般化能力が確認された。
さらに,提案したIF-GEPSVMおよびIF-IGEPSVMモデルをUSPS認識データセット上に実装し,実世界および実世界の応用におけるモデルの有効性を裏付ける有望な結果を得た。
関連論文リスト
- Intuitionistic Fuzzy Universum Twin Support Vector Machine for Imbalanced Data [0.0]
機械学習手法の大きな問題の1つは、不均衡なデータセットを分類することである。
不均衡データ(IFUTSVM-ID)のための直観的ファジィユニバームツインサポートベクトルマシンを提案する。
雑音や外周の影響を軽減するため,直観主義的なファジィ・メンバシップ・スキームを用いる。
論文 参考訳(メタデータ) (2024-10-27T04:25:42Z) - Granular Ball Twin Support Vector Machine [0.0]
MixtureTwinサポートベクターマシン(TSVM)における非パラメトリック可能性推定器は、分類および回帰作業に多目的に適用可能な、新興機械学習モデルである。
TSVMは、その効率性と大規模データセットの適用性に対する重大な障害に直面している。
粒状球双対支持ベクトルマシン(GBTSVM)と大型球双対支持ベクトルマシン(LS-GBTSVM)を提案する。
UCI,KEEL,NDCデータセットのベンチマークデータセットを用いて,GBTSVMおよびLS-GBTSVMモデルの総合評価を行う。
論文 参考訳(メタデータ) (2024-10-07T06:20:36Z) - Preventing Model Collapse in Gaussian Process Latent Variable Models [11.45681373843122]
本稿では,線形フーリエVMのレンズによるモデル崩壊に対する射影分散の影響を理論的に検討する。
我々は、スペクトル混合(SM)カーネルと微分可能乱数特徴(RFF)カーネル近似を統合することにより、カーネルの柔軟性が不十分なため、モデル崩壊に取り組む。
提案したVMは、アドバイスRFLVMと呼ばれ、さまざまなデータセットで評価され、さまざまな競合モデルよりも一貫して優れています。
論文 参考訳(メタデータ) (2024-04-02T06:58:41Z) - Self-Supervised Dataset Distillation for Transfer Learning [77.4714995131992]
ラベルなしデータセットを、効率的な自己教師付き学習(SSL)のための小さな合成サンプル群に蒸留する新しい問題を提案する。
両レベル最適化におけるSSL目標に対する合成サンプルの勾配は、データ拡張やマスキングから生じるランダム性から、テキストバイアスを受けていることを最初に証明する。
転送学習を含む様々な応用における本手法の有効性を実証的に検証する。
論文 参考訳(メタデータ) (2023-10-10T10:48:52Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
異なるスコアに基づく因果探索法は観測データから有向非巡回グラフを学習する。
本稿では,Reweighted Score関数ReScoreの適応重みを動的に学習することにより因果発見性能を向上させるためのモデルに依存しないフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-06T14:49:59Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - AcME -- Accelerated Model-agnostic Explanations: Fast Whitening of the
Machine-Learning Black Box [1.7534486934148554]
解釈可能性のアプローチは、ユーザが待つことなく、実行可能な洞察を提供するべきです。
本稿では,グローバルレベルとローカルレベルの両方で特徴的重要性のスコアを迅速に提供する解釈可能性アプローチである,アクセレーションモデル非依存説明(AcME)を提案する。
AcMEは機能ランキングを計算しますが、機能値の変化がモデル予測にどのように影響するかを評価するために、What-if分析ツールも提供しています。
論文 参考訳(メタデータ) (2021-12-23T15:18:13Z) - Locally Interpretable Model Agnostic Explanations using Gaussian
Processes [2.9189409618561966]
LIME(Local Interpretable Model-Agnostic Explanations)は、単一インスタンスの予測を説明する一般的なテクニックである。
局所的解釈可能なモデルのガウス過程(GP)に基づくバリエーションを提案する。
提案手法は,LIMEに比べてはるかに少ないサンプルを用いて忠実な説明を生成可能であることを示す。
論文 参考訳(メタデータ) (2021-08-16T05:49:01Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
最近のコンピュータビジョンの進歩は、分類モデルの一般化能力を改善するために、逆データ拡張を利用する。
本稿では,中間的特徴埋め込みにおける敵対的拡張を提唱する効率的かつ効率的な代替手法を提案する。
代表的なバックボーンネットワークを用いて,多様な視覚認識タスクにまたがる提案手法を検証する。
論文 参考訳(メタデータ) (2021-03-22T20:36:34Z) - Estimating Average Treatment Effects with Support Vector Machines [77.34726150561087]
サポートベクターマシン(SVM)は、機械学習文献で最も人気のある分類アルゴリズムの1つです。
我々はsvmをカーネルベースの重み付け手順として適用し,治療群と制御群の最大平均差を最小化する。
このトレードオフから生じる因果効果推定のバイアスを特徴づけ、提案されたSVM手順と既存のカーネルバランシング手法を結びつけます。
論文 参考訳(メタデータ) (2021-02-23T20:22:56Z) - Cauchy-Schwarz Regularized Autoencoder [68.80569889599434]
変分オートエンコーダ(VAE)は、強力で広く使われている生成モデルのクラスである。
GMMに対して解析的に計算できるCauchy-Schwarz分散に基づく新しい制約対象を導入する。
本研究の目的は,密度推定,教師なしクラスタリング,半教師なし学習,顔分析における変分自動エンコーディングモデルの改善である。
論文 参考訳(メタデータ) (2021-01-06T17:36:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。