論文の概要: Classical Machine Learning: Seventy Years of Algorithmic Learning Evolution
- arxiv url: http://arxiv.org/abs/2408.01747v2
- Date: Mon, 19 Aug 2024 17:31:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-21 01:39:16.046394
- Title: Classical Machine Learning: Seventy Years of Algorithmic Learning Evolution
- Title(参考訳): 古典的機械学習: アルゴリズム学習の進化の70年
- Authors: Absalom E. Ezugwu, Yuh-Shan Ho, Ojonukpe S. Egwuche, Olufisayo S. Ekundayo, Annette Van Der Merwe, Apu K. Saha, Jayanta Pal,
- Abstract要約: 機械学習(ML)は多くの分野を変えてきたが、その基礎研究を理解することは、その継続的な進歩に不可欠である。
本稿では,古典的MLアルゴリズムの概要を概説し,12年間にわたる最先端の出版物について考察する。
我々は、著名なMLカンファレンスやジャーナルから引用された論文のデータセットを分析し、引用とキーワード分析を用いて批判的な洞察を明らかにした。
- 参考スコア(独自算出の注目度): 1.121816400852218
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning (ML) has transformed numerous fields, but understanding its foundational research is crucial for its continued progress. This paper presents an overview of the significant classical ML algorithms and examines the state-of-the-art publications spanning twelve decades through an extensive bibliometric analysis study. We analyzed a dataset of highly cited papers from prominent ML conferences and journals, employing citation and keyword analyses to uncover critical insights. The study further identifies the most influential papers and authors, reveals the evolving collaborative networks within the ML community, and pinpoints prevailing research themes and emerging focus areas. Additionally, we examine the geographic distribution of highly cited publications, highlighting the leading countries in ML research. This study provides a comprehensive overview of the evolution of traditional learning algorithms and their impacts. It discusses challenges and opportunities for future development, focusing on the Global South. The findings from this paper offer valuable insights for both ML experts and the broader research community, enhancing understanding of the field's trajectory and its significant influence on recent advances in learning algorithms.
- Abstract(参考訳): 機械学習(ML)は多くの分野を変えてきたが、その基礎研究を理解することは、その継続的な進歩に不可欠である。
本稿では,古典的MLアルゴリズムの概要を概説し,12年間にわたる最先端の出版物について,広範囲にわたる文献分析研究を通じて検討する。
我々は、著名なMLカンファレンスやジャーナルから引用された論文のデータセットを分析し、引用とキーワード分析を用いて批判的な洞察を明らかにした。
この研究は、最も影響力のある論文や著者を識別し、MLコミュニティ内で進化する協調ネットワークを明らかにし、研究テーマや新たな焦点分野の要点を明らかにしている。
さらに,高度に引用された出版物の地理的分布について検討し,ML研究の先進国を取り上げている。
本研究では,従来の学習アルゴリズムの進化とその影響について概観する。
グローバル・サウスに焦点をあて、今後の発展への挑戦と機会について論じている。
本稿では,MLの専門家と広い研究コミュニティに貴重な洞察を与え,この分野の軌跡の理解を深め,近年の学習アルゴリズムの進歩にその影響を及ぼした。
関連論文リスト
- Enhancing literature review with LLM and NLP methods. Algorithmic trading case [0.0]
本研究では,機械学習アルゴリズムを用いて,アルゴリズム取引分野の知識を分析し,整理する。
1956年から2020年の第1四半期にかけて、1億3600万件の研究論文のデータセットをフィルタリングして14,342件の関連記事を特定した。
論文 参考訳(メタデータ) (2024-10-23T13:37:27Z) - Learning the Bitter Lesson: Empirical Evidence from 20 Years of CVPR Proceedings [1.3812010983144802]
本研究では,コンピュータビジョンとパターン認識に関するemphConference on Computer Vision and Pattern Recognition(CVPR)研究と,Rich Sutton氏の提唱する"ビット・レッスン"の原則の整合性を検討する。
大規模言語モデル(LLM)を用いて,20年にわたるCVPRの抽象概念とタイトルを分析し,これらの原則の受容性を評価する。
論文 参考訳(メタデータ) (2024-10-12T21:06:13Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
検索エンハンスメントは機械学習(ML)の幅広い範囲に拡張できる
この研究は、MLの様々な領域の文献を、現在の文献から欠落している一貫した表記で合成することで、このパラダイムの正式なフレームワークであるRetrieval-Enhanced Machine Learning (REML)を導入する。
本研究の目的は、様々な分野の研究者に対して、検索強化モデルの包括的、正式に構造化された枠組みを付与し、学際的な将来の研究を促進することである。
論文 参考訳(メタデータ) (2024-07-17T20:01:21Z) - Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
オントロジはドメイン知識とメタデータを表現するために広く使われている。
1つの簡単な解決策は、統計分析と機械学習を統合することである。
埋め込みに関する多くの論文が出版されているが、体系的なレビューの欠如により、研究者はこの分野の包括的な理解を妨げている。
論文 参考訳(メタデータ) (2024-06-16T14:49:19Z) - Federated Learning for Generalization, Robustness, Fairness: A Survey
and Benchmark [55.898771405172155]
フェデレートラーニングは、異なる当事者間のプライバシー保護コラボレーションのための有望なパラダイムとして登場した。
我々は,連合学習研究の重要かつ最近の展開を体系的に概観する。
論文 参考訳(メタデータ) (2023-11-12T06:32:30Z) - A Comprehensive Study of Groundbreaking Machine Learning Research:
Analyzing highly cited and impactful publications across six decades [1.6442870218029522]
機械学習(ML)は、コンピュータ科学やその他の関連分野の研究分野として注目されている。
重要なトレンド、影響力のある著者、そしてこれまでの重要な貢献を識別するために、高度に引用された出版物の風景を理解することが不可欠である。
論文 参考訳(メタデータ) (2023-08-01T21:43:22Z) - A Comprehensive Overview of Large Language Models [68.22178313875618]
大規模言語モデル(LLM)は、最近自然言語処理タスクにおいて顕著な機能を示した。
本稿では, LLM関連概念の幅広い範囲について, 既存の文献について概説する。
論文 参考訳(メタデータ) (2023-07-12T20:01:52Z) - Interpretability of Machine Learning: Recent Advances and Future
Prospects [21.68362950922772]
機械学習(ML)の普及は、様々なマルチメディアコンテンツの研究に前例のない関心を集めている。
現代のML、特にディープニューラルネットワーク(DNN)におけるブラックボックスの性質は、MLベースの表現学習において主要な課題となっている。
本稿では,MLの解釈可能性に関する最近の進歩と今後の展望について述べる。
論文 参考訳(メタデータ) (2023-04-30T17:31:29Z) - A Survey on Few-Shot Class-Incremental Learning [11.68962265057818]
FSCIL(Few-shot class-incremental Learning)は、ディープニューラルネットワークが新しいタスクを学習する上で重要な課題である。
本稿では, FSCILに関する包括的調査を行う。
FSCILはコンピュータビジョンの様々な分野で大きな成果を上げている。
論文 参考訳(メタデータ) (2023-04-17T10:15:08Z) - Investigating Fairness Disparities in Peer Review: A Language Model
Enhanced Approach [77.61131357420201]
我々は、大規模言語モデル(LM)の助けを借りて、ピアレビューにおける公平性格差の徹底した厳密な研究を行う。
我々は、2017年から現在までのICLR(International Conference on Learning Representations)カンファレンスで、包括的なリレーショナルデータベースを収集、組み立て、維持しています。
我々は、著作者性別、地理、著作者、機関的名声など、興味のある複数の保護属性に対する公平性の違いを仮定し、研究する。
論文 参考訳(メタデータ) (2022-11-07T16:19:42Z) - Deep Learning to See: Towards New Foundations of Computer Vision [88.69805848302266]
この本はコンピュータビジョンの分野における科学的進歩を批判している。
情報に基づく自然法則の枠組みにおける視覚の研究を提案する。
論文 参考訳(メタデータ) (2022-06-30T15:20:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。