論文の概要: Quantum Machine Learning: Unveiling Trends, Impacts through Bibliometric Analysis
- arxiv url: http://arxiv.org/abs/2504.07726v1
- Date: Thu, 10 Apr 2025 13:18:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-11 12:24:22.456349
- Title: Quantum Machine Learning: Unveiling Trends, Impacts through Bibliometric Analysis
- Title(参考訳): 量子機械学習 - ビブリオメトリック分析によるトレンドの解明と影響
- Authors: Riya Bansal, Nikhil Kumar Rajput,
- Abstract要約: 量子機械学習(Quantum Machine Learning、QML)は、量子コンピューティングと機械学習の2つの革命的な分野の交差点である。
本研究は,2000年から2023年までのQMLに関連する科学的情報の総合的文献計測分析を行う。
- 参考スコア(独自算出の注目度): 1.1510009152620668
- License:
- Abstract: Quantum Machine Learning (QML) is the intersection of two revolutionary fields: quantum computing and machine learning. It promises to unlock unparalleled capabilities in data analysis, model building, and problem-solving by harnessing the unique properties of quantum mechanics. This research endeavors to conduct a comprehensive bibliometric analysis of scientific information pertaining to QML covering the period from 2000 to 2023. An extensive dataset comprising 9493 scholarly works is meticulously examined to unveil notable trends, impact factors, and funding patterns within the domain. Additionally, the study employs bibliometric mapping techniques to visually illustrate the network relationships among key countries, institutions, authors, patent citations and significant keywords in QML research. The analysis reveals a consistent growth in publications over the examined period. The findings highlight the United States and China as prominent contributors, exhibiting substantial publication and citation metrics. Notably, the study concludes that QML, as a research subject, is currently in a formative stage, characterized by robust scholarly activity and ongoing development.
- Abstract(参考訳): 量子機械学習(Quantum Machine Learning、QML)は、量子コンピューティングと機械学習の2つの革命的な分野の交差点である。
データ解析、モデル構築、問題解決において、量子力学のユニークな性質を活用することで、非並列的な機能を解き放つことを約束している。
本研究は,2000年から2023年までのQMLに関連する科学的情報の総合的文献計測分析を行う。
9493の学術論文からなる広範囲なデータセットを精査し、ドメイン内の顕著な傾向、影響要因、資金調達パターンを明らかにする。
さらに、本研究では、主要な国、機関、著者、特許引用、QML研究における重要なキーワード間のネットワーク関係を視覚的に説明するために、バイオロメトリマッピング技術を用いている。
この分析は、調査期間中に出版物が一貫した成長を見せている。
この発見は、アメリカと中国を顕著な貢献者として強調し、かなりの出版と引用の指標を示した。
この研究は、研究対象として、QMLは現在、堅牢な学術活動と継続的な発展を特徴とする形式的な段階にあると結論付けている。
関連論文リスト
- Classical Machine Learning: Seventy Years of Algorithmic Learning Evolution [1.121816400852218]
機械学習(ML)は多くの分野を変えてきたが、その基礎研究を理解することは、その継続的な進歩に不可欠である。
本稿では,古典的MLアルゴリズムの概要を概説し,12年間にわたる最先端の出版物について考察する。
我々は、著名なMLカンファレンスやジャーナルから引用された論文のデータセットを分析し、引用とキーワード分析を用いて批判的な洞察を明らかにした。
論文 参考訳(メタデータ) (2024-08-03T11:07:10Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
検索エンハンスメントは機械学習(ML)の幅広い範囲に拡張できる
この研究は、MLの様々な領域の文献を、現在の文献から欠落している一貫した表記で合成することで、このパラダイムの正式なフレームワークであるRetrieval-Enhanced Machine Learning (REML)を導入する。
本研究の目的は、様々な分野の研究者に対して、検索強化モデルの包括的、正式に構造化された枠組みを付与し、学際的な将来の研究を促進することである。
論文 参考訳(メタデータ) (2024-07-17T20:01:21Z) - SPIQA: A Dataset for Multimodal Question Answering on Scientific Papers [43.18330795060871]
SPIQAは、科学研究論文の文脈内で複雑な図形や表を解釈するために設計されたデータセットである。
データセット作成には自動および手動のキュレーションを使用します。
SPIQAは270Kの質問をトレーニング、検証、3つの異なる評価分割に分割する。
論文 参考訳(メタデータ) (2024-07-12T16:37:59Z) - A Literature Review of Literature Reviews in Pattern Analysis and Machine Intelligence [55.33653554387953]
パターン分析とマシンインテリジェンス(PAMI)は、情報の収集と断片化を目的とした多くの文献レビューにつながっている。
本稿では、PAMI分野におけるこれらの文献レビューの徹底的な分析について述べる。
1)PAMI文献レビューの構造的・統計的特徴は何か,(2)レビューの増大するコーパスを効率的にナビゲートするために研究者が活用できる戦略は何か,(3)AIが作成したレビューの利点と限界は人間によるレビューと比較するとどのようなものか,という3つの主要な研究課題に対処しようとする。
論文 参考訳(メタデータ) (2024-02-20T11:28:50Z) - Quantum-Inspired Machine Learning: a Survey [32.913044758923455]
量子インスパイアされた機械学習(QiML)は急成長する分野であり、研究者から世界的な注目を集めている。
本調査では,テンソルネットワークシミュレーションや復号化アルゴリズムなど,QiMLのさまざまな研究領域について調査する。
QiMLが進化を続けるにつれて、量子力学、量子コンピューティング、そして古典的な機械学習から引き出された、数多くの将来の発展が予想される。
論文 参考訳(メタデータ) (2023-08-22T08:29:09Z) - A Comprehensive Study of Groundbreaking Machine Learning Research:
Analyzing highly cited and impactful publications across six decades [1.6442870218029522]
機械学習(ML)は、コンピュータ科学やその他の関連分野の研究分野として注目されている。
重要なトレンド、影響力のある著者、そしてこれまでの重要な貢献を識別するために、高度に引用された出版物の風景を理解することが不可欠である。
論文 参考訳(メタデータ) (2023-08-01T21:43:22Z) - Transition Role of Entangled Data in Quantum Machine Learning [51.6526011493678]
エンタングルメントは量子コンピューティングを強化するリソースとして機能する。
最近の進歩は量子力学の学習に対する肯定的な影響を浮き彫りにした。
我々は、絡み合ったデータを用いて量子力学を学習するための量子no-free-lunch(NFL)定理を確立する。
論文 参考訳(メタデータ) (2023-06-06T08:06:43Z) - Investigating Fairness Disparities in Peer Review: A Language Model
Enhanced Approach [77.61131357420201]
我々は、大規模言語モデル(LM)の助けを借りて、ピアレビューにおける公平性格差の徹底した厳密な研究を行う。
我々は、2017年から現在までのICLR(International Conference on Learning Representations)カンファレンスで、包括的なリレーショナルデータベースを収集、組み立て、維持しています。
我々は、著作者性別、地理、著作者、機関的名声など、興味のある複数の保護属性に対する公平性の違いを仮定し、研究する。
論文 参考訳(メタデータ) (2022-11-07T16:19:42Z) - Artificial Intelligence in Concrete Materials: A Scientometric View [77.34726150561087]
本章は, コンクリート材料用AI研究の主目的と知識構造を明らかにすることを目的としている。
まず、1990年から2020年にかけて発行された389の雑誌記事が、ウェブ・オブ・サイエンスから検索された。
キーワード共起分析やドキュメント共起分析などのサイエントメトリックツールを用いて,研究分野の特徴と特徴を定量化した。
論文 参考訳(メタデータ) (2022-09-17T18:24:56Z) - A historical review and Bibliometric analysis of research on Weak
measurement research over the past decades based on Biblioshiny [4.278591555984394]
我々は2000年から2020年にかけての弱測定研究のグローバルな科学的成果を評価するためにバイオロメトリ手法を用いた。
出版物の数は時間とともに大幅に増加した。
焦点は量子情報の研究と弱い信号の増幅へと進化してきた。
論文 参考訳(メタデータ) (2021-08-25T03:07:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。