論文の概要: Building Living Software Systems with Generative & Agentic AI
- arxiv url: http://arxiv.org/abs/2408.01768v1
- Date: Sat, 3 Aug 2024 12:35:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 18:30:57.885204
- Title: Building Living Software Systems with Generative & Agentic AI
- Title(参考訳): ジェネレーティブ&エージェントAIによるリビングソフトウェアシステムの構築
- Authors: Jules White,
- Abstract要約: 現在のソフトウェアシステムは静的で柔軟性がないため、人間の目標を計算アクションに翻訳する際の課題に繋がる。
生成AIを利用した「ソフトウェアシステム開発」は、コンピューティングにおけるこの根本的な問題の解決策を提供する。
生成的AI、特に大きな言語モデルは、人間の意図とコンピュータ操作の間の普遍的なトランスレータとして機能する。
- 参考スコア(独自算出の注目度): 2.2481284426718533
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper is an opinion paper that looks at the future of computing in the age of Generative \& Agentic AI. Current software systems are static and inflexible, leading to significant challenges in translating human goals into computational actions. "Living software systems" powered by generative AI offer a solution to this fundamental problem in computing. Traditional software development involves multiple layers of imperfect translation, from business requirements to code, resulting in rigid systems that struggle to adapt to changing user needs and contexts. Generative AI, particularly large language models, can serve as a universal translator between human intent and computer operations. This approach enables the creation of more flexible, context-aware systems that can dynamically evolve to meet user goals. Two pathways for implementing living software systems are explored: using generative AI to accelerate traditional software development, and leveraging agentic AI to create truly adaptive systems. New skills like Prompt Engineering are necessary. By reimagining software as a living, adaptable entity, we can create computing interfaces that are more intuitive, powerful, and responsive to human needs.
- Abstract(参考訳): 本稿では、ジェネレーティブ \&エージェントAIの時代におけるコンピューティングの未来を考察する意見論文である。
現在のソフトウェアシステムは静的で柔軟性がないため、人間の目標を計算行動に変換する上で大きな課題となる。
生成AIを利用した「ソフトウェアシステム開発」は、コンピューティングにおけるこの根本的な問題の解決策を提供する。
従来のソフトウェア開発には、ビジネス要件からコードまで、複数の不完全な翻訳レイヤが含まれています。
生成的AI、特に大きな言語モデルは、人間の意図とコンピュータ操作の間の普遍的なトランスレータとして機能する。
このアプローチにより、ユーザの目標を達成するために動的に進化可能な、より柔軟でコンテキスト対応のシステムの開発が可能になる。
生成AIを使用して従来のソフトウェア開発を加速し、エージェントAIを活用して真に適応的なシステムを構築する。
プロンプトエンジニアリングのような新しいスキルが必要です。
ソフトウェアを生き生きとした適応可能なエンティティとして再想像することで、より直感的で強力で、人間の要求に反応するコンピューティングインターフェースを作ることができます。
関連論文リスト
- Overview of Current Challenges in Multi-Architecture Software Engineering and a Vision for the Future [0.0]
提示されたシステムアーキテクチャは、動的な知識グラフベースのWebAssembly Twinsの概念に基づいている。
結果として得られるシステムは、エンドユーザによる完全な透明性とコントロール性を備えた、高度な自律能力を持つことになる。
論文 参考訳(メタデータ) (2024-10-28T13:03:09Z) - Toward Programming Languages for Reasoning: Humans, Symbolic Systems, and AI Agents [0.0]
統合、構成、機械化、AIによる開発支援は、ソフトウェア開発の将来を駆動するテーマである。
本稿では,新しい言語機能や論理構造ではなく,バスク語のプラットフォームと言語という形で急進的な単純化を提案する。
論文 参考訳(メタデータ) (2024-07-08T19:50:42Z) - Artificial General Intelligence (AGI)-Native Wireless Systems: A Journey Beyond 6G [58.440115433585824]
デジタルツイン(DT)のようなサービスをサポートする将来の無線システムの構築は、メタサーフェスのような従来の技術への進歩を通じて達成することが困難である。
人工知能(AI)ネイティブネットワークは、無線技術のいくつかの制限を克服することを約束する一方で、開発は依然としてニューラルネットワークのようなAIツールに依存している。
本稿では、AIネイティブ無線システムの概念を再考し、それらを人工知能(AGI)ネイティブシステムに変換するために必要な共通感覚を取り入れた。
論文 参考訳(メタデータ) (2024-04-29T04:51:05Z) - Bridging Gaps, Building Futures: Advancing Software Developer Diversity and Inclusion Through Future-Oriented Research [50.545824691484796]
我々はSEの多様性と包摂性に関する課題と解決策について、SE研究者や実践者から知見を提示する。
我々は,将来的なユートピアやディストピアのビジョンを共有し,今後の研究の方向性とアカデミックや産業への示唆を提供する。
論文 参考訳(メタデータ) (2024-04-10T16:18:11Z) - Exploring the intersection of Generative AI and Software Development [0.0]
生成AIとソフトウェアエンジニアリングの相乗効果は、変革的なフロンティアとして現れます。
このホワイトペーパーは、探索されていない領域に展開し、生成的AI技術がソフトウェア開発にどのように革命をもたらすかを解明する。
これはステークホルダーのためのガイドとして機能し、ソフトウェア工学における生成AIの適用に関する議論と実験を促している。
論文 参考訳(メタデータ) (2023-12-21T19:23:23Z) - Large Language Models Empowered Autonomous Edge AI for Connected
Intelligence [51.269276328087855]
エッジ人工知能(Edge AI)は、コネクテッドインテリジェンスを実現するための有望なソリューションである。
この記事では、ユーザのさまざまな要件を満たすために自動的に組織化し、適応し、最適化する、自律的なエッジAIシステムのビジョンを示す。
論文 参考訳(メタデータ) (2023-07-06T05:16:55Z) - End-User Development for Artificial Intelligence: A Systematic
Literature Review [2.347942013388615]
エンドユーザ開発(EUD)は、AIベースのシステムを自分たちのニーズに合わせて作成、カスタマイズ、あるいは適用することができる。
本稿では,AIシステムにおけるEUDの現在の状況に光を当てることを目的とした文献レビューを紹介する。
論文 参考訳(メタデータ) (2023-04-14T09:57:36Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
モデル駆動型ソフトウェアエンジニアリングとモデル駆動型AIエンジニアリングを実現するための新しいアプローチを提案する。
特に、私たちはAutomated MLをサポートし、AI集約システムの開発において、AIの深い知識のないソフトウェアエンジニアを支援します。
論文 参考訳(メタデータ) (2022-03-06T10:12:56Z) - GenNI: Human-AI Collaboration for Data-Backed Text Generation [102.08127062293111]
Table2Textシステムは、機械学習を利用した構造化データに基づいてテキスト出力を生成する。
GenNI (Generation Negotiation Interface) は、対話型ビジュアルシステムである。
論文 参考訳(メタデータ) (2021-10-19T18:07:07Z) - Draw your Neural Networks [0.0]
このGUIベースのアプローチを用いて,ニューラルネットワークの設計と修正を行うSketchフレームワークを提案する。
このシステムは一般的なレイヤと操作を最初から提供し、サポート対象のトレーニング済みモデルをインポートできる。
論文 参考訳(メタデータ) (2020-12-12T09:44:03Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
民主化学習(Dem-AI)という新しいデザイン哲学を提案する。
ヒトの社会的グループに触発され、提案されたDem-AIシステムの学習エージェントの専門グループは階層構造で自己組織化され、より効率的に学習タスクを遂行する。
本稿では,様々な学際分野に触発された未来のDem-AIシステムを実現するためのガイドラインとして,参照設計を提案する。
論文 参考訳(メタデータ) (2020-03-18T08:45:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。