論文の概要: Optimizing Intrusion Detection System Performance Through Synergistic Hyperparameter Tuning and Advanced Data Processing
- arxiv url: http://arxiv.org/abs/2408.01792v1
- Date: Sat, 3 Aug 2024 14:09:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 18:21:07.292015
- Title: Optimizing Intrusion Detection System Performance Through Synergistic Hyperparameter Tuning and Advanced Data Processing
- Title(参考訳): 相乗的ハイパーパラメータチューニングと高度なデータ処理による侵入検知システムの性能最適化
- Authors: Samia Saidane, Francesco Telch, Kussai Shahin, Fabrizio Granelli,
- Abstract要約: 侵入検知は、悪意のある活動に対するコンピュータネットワークの確保に不可欠である。
そこで本研究では,ディープラーニングとデータバランシング,高次元化を組み合わせたシステムを提案する。
CIC IDS 2018やCIC IDS 2017のような広範なデータセットをトレーニングすることで、当社のモデルは堅牢なパフォーマンスと一般化を示している。
- 参考スコア(独自算出の注目度): 3.3148772440755527
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Intrusion detection is vital for securing computer networks against malicious activities. Traditional methods struggle to detect complex patterns and anomalies in network traffic effectively. To address this issue, we propose a system combining deep learning, data balancing (K-means + SMOTE), high-dimensional reduction (PCA and FCBF), and hyperparameter optimization (Extra Trees and BO-TPE) to enhance intrusion detection performance. By training on extensive datasets like CIC IDS 2018 and CIC IDS 2017, our models demonstrate robust performance and generalization. Notably, the ensemble model "VGG19" consistently achieves remarkable accuracy (99.26% on CIC-IDS2017 and 99.22% on CSE-CIC-IDS2018), outperforming other models.
- Abstract(参考訳): 侵入検知は、悪意のある活動に対するコンピュータネットワークの確保に不可欠である。
従来の手法は、ネットワークトラフィックの複雑なパターンや異常を効果的に検出するのに苦労する。
この問題に対処するために,ディープラーニング,データバランシング(K-means + SMOTE),高次元縮小(PCAとFCBF),ハイパーパラメータ最適化(Extra TreesとBO-TPE)を組み合わせたシステムを提案する。
CIC IDS 2018やCIC IDS 2017のような広範なデータセットをトレーニングすることで、当社のモデルは堅牢なパフォーマンスと一般化を示している。
特に、アンサンブルモデル「VGG19」は、CIC-IDS2017では99.26%、CSE-CIC-IDS2018では99.22%の精度で、他のモデルより優れている。
関連論文リスト
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Enhanced Convolution Neural Network with Optimized Pooling and Hyperparameter Tuning for Network Intrusion Detection [0.0]
ネットワーク侵入検知システム(NIDS)のための拡張畳み込みニューラルネットワーク(EnCNN)を提案する。
我々はEnCNNと、ロジスティック回帰、決定木、サポートベクトルマシン(SVM)、ランダムフォレスト、AdaBoost、Votting Ensembleといったアンサンブル手法など、さまざまな機械学習アルゴリズムを比較した。
その結果,EnCNNは検出精度を大幅に向上し,最先端アプローチよりも10%向上した。
論文 参考訳(メタデータ) (2024-09-27T11:20:20Z) - Enhancing IoT Security with CNN and LSTM-Based Intrusion Detection Systems [0.23408308015481666]
提案モデルは,畳み込みニューラルネットワーク(CNN)と長短期記憶(LSTM)ディープラーニング(DL)モデルを組み合わせて構成する。
この融合により、IoTトラフィックをバイナリカテゴリ、良性、悪意のあるアクティビティに検出し、分類することが可能になる。
提案モデルの精度は98.42%,最小損失は0.0275である。
論文 参考訳(メタデータ) (2024-05-28T22:12:15Z) - On the Cross-Dataset Generalization of Machine Learning for Network
Intrusion Detection [50.38534263407915]
ネットワーク侵入検知システム(NIDS)はサイバーセキュリティの基本的なツールである。
多様なネットワークにまたがる一般化能力は、その有効性と現実のアプリケーションにとって必須の要素である。
本研究では,機械学習に基づくNIDSの一般化に関する包括的分析を行う。
論文 参考訳(メタデータ) (2024-02-15T14:39:58Z) - Machine learning-based network intrusion detection for big and
imbalanced data using oversampling, stacking feature embedding and feature
extraction [6.374540518226326]
侵入検知システム(IDS)は、悪意あるアクターや活動を検出することによって相互接続ネットワークを保護する上で重要な役割を果たす。
本稿では,データ不均衡にRandom Oversampling (RO) を用いる新しいMLベースのネットワーク侵入検出モデルと,次元削減のためのStacking Feature Embedding (PCA)を提案する。
CIC-IDS 2017データセットを使用すると、DT、RF、ETモデルは99.99%の精度に達し、DTとRFモデルはCIC-IDS 2018データセットで99.94%の精度が得られる。
論文 参考訳(メタデータ) (2024-01-22T05:49:41Z) - A Dependable Hybrid Machine Learning Model for Network Intrusion
Detection [1.222622290392729]
本稿では,機械学習とディープラーニングを組み合わせたハイブリッドモデルを提案する。
提案手法は,KDDCUP'99とCIC-MalMem-2022の2つのデータセットでテストした場合,優れた結果が得られる。
論文 参考訳(メタデータ) (2022-12-08T20:19:27Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
最近のコンピュータビジョンの進歩は、分類モデルの一般化能力を改善するために、逆データ拡張を利用する。
本稿では,中間的特徴埋め込みにおける敵対的拡張を提唱する効率的かつ効率的な代替手法を提案する。
代表的なバックボーンネットワークを用いて,多様な視覚認識タスクにまたがる提案手法を検証する。
論文 参考訳(メタデータ) (2021-03-22T20:36:34Z) - Multi-Stage Optimized Machine Learning Framework for Network Intrusion
Detection [8.26773636337474]
本稿では,MLに基づく新しい多段階最適化NIDSフレームワークを提案する。
検出性能を維持しながら計算複雑性を低減する。
提案したフレームワークは、必要なトレーニングサンプルサイズ(最大74%)と機能セットサイズ(最大50%)を著しく削減する。
論文 参考訳(メタデータ) (2020-08-09T03:18:00Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoTデバイスは複雑なディープニューラルネットワーク(DNN)モデルにはほとんど余裕がなく、異常検出タスクをクラウドにオフロードすることは長い遅延を引き起こす。
本稿では,分散階層エッジコンピューティング(HEC)システムを対象とした適応型異常検出手法のデモと構築を行う。
提案手法は,検出タスクをクラウドにオフロードした場合と比較して,精度を犠牲にすることなく検出遅延を著しく低減することを示す。
論文 参考訳(メタデータ) (2020-04-15T06:13:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。