論文の概要: Network Anomaly Detection for IoT Using Hyperdimensional Computing on NSL-KDD
- arxiv url: http://arxiv.org/abs/2503.03031v1
- Date: Tue, 04 Mar 2025 22:19:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-06 15:52:47.707594
- Title: Network Anomaly Detection for IoT Using Hyperdimensional Computing on NSL-KDD
- Title(参考訳): NSL-KDDを用いた超次元計算によるIoTのネットワーク異常検出
- Authors: Ghazal Ghajari, Ashutosh Ghimire, Elaheh Ghajari, Fathi Amsaad,
- Abstract要約: 本稿では,超次元計算(HDC)技術を用いたネットワーク異常検出手法を提案する。
提案手法は,大規模データ処理におけるHDCの効率を利用して,未知の攻撃パターンと未知の攻撃パターンを識別する。
このモデルはKDDTrain+サブセットで91.55%の精度を達成し、従来のアプローチよりも優れていた。
- 参考スコア(独自算出の注目度): 0.2399911126932527
- License:
- Abstract: With the rapid growth of IoT devices, ensuring robust network security has become a critical challenge. Traditional intrusion detection systems (IDSs) often face limitations in detecting sophisticated attacks within high-dimensional and complex data environments. This paper presents a novel approach to network anomaly detection using hyperdimensional computing (HDC) techniques, specifically applied to the NSL-KDD dataset. The proposed method leverages the efficiency of HDC in processing large-scale data to identify both known and unknown attack patterns. The model achieved an accuracy of 91.55% on the KDDTrain+ subset, outperforming traditional approaches. These comparative evaluations underscore the model's superior performance, highlighting its potential in advancing anomaly detection for IoT networks and contributing to more secure and intelligent cybersecurity solutions.
- Abstract(参考訳): IoTデバイスの急速な成長により、堅牢なネットワークセキュリティを保証することが重要な課題となっている。
従来の侵入検知システム(IDS)は、高次元および複雑なデータ環境における高度な攻撃を検出する際に、しばしば制限に直面している。
本稿では,超次元計算(HDC)技術を用いたネットワーク異常検出の新しい手法を提案する。
提案手法は,大規模データ処理におけるHDCの効率を利用して,未知の攻撃パターンと未知の攻撃パターンを識別する。
このモデルはKDDTrain+サブセットで91.55%の精度を達成し、従来のアプローチよりも優れていた。
これらの比較評価は、IoTネットワークの異常検出を前進させ、よりセキュアでインテリジェントなサイバーセキュリティソリューションに寄与する可能性を強調し、モデルの優れたパフォーマンスを強調している。
関連論文リスト
- A Conditional Tabular GAN-Enhanced Intrusion Detection System for Rare Attacks in IoT Networks [1.1970409518725493]
モノのインターネット(IoT)ネットワークは、6G技術によって強化され、さまざまな産業に変化をもたらしている。
彼らの普及は、特に稀だが潜在的に破壊的なサイバー攻撃を検出する際に、重大なセキュリティリスクをもたらす。
従来のIDSは、IoTデータの深刻なクラス不均衡により、まれな攻撃を検出するのに苦労することが多い。
論文 参考訳(メタデータ) (2025-02-09T21:13:11Z) - Investigating Application of Deep Neural Networks in Intrusion Detection System Design [0.0]
研究の目的は、ディープニューラルネットワーク(DNN)のアプリケーションが、悪意のあるネットワーク侵入を正確に検出し、特定できるかどうかを学習することである。
実験結果は,ネットワーク侵入の分類を正確に正確に識別するためのモデルのサポートを示さなかった。
論文 参考訳(メタデータ) (2025-01-27T04:06:30Z) - Enhancing Internet of Things Security throughSelf-Supervised Graph Neural Networks [1.0678175996321808]
新しいタイプの攻撃は、通常攻撃よりもはるかに少ないサンプルを持ち、不均衡なデータセットにつながることが多い。
マルコフグラフ畳み込みネットワーク(MarkovGCN)を用いた自己教師付き学習(SSL)によるIoT侵入検出の新しいアプローチを提案する。
当社のアプローチでは,IoTネットワーク固有の構造を活用してGCNを事前トレーニングし,侵入検出タスクを微調整する。
論文 参考訳(メタデータ) (2024-12-17T17:40:14Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Machine learning-based network intrusion detection for big and
imbalanced data using oversampling, stacking feature embedding and feature
extraction [6.374540518226326]
侵入検知システム(IDS)は、悪意あるアクターや活動を検出することによって相互接続ネットワークを保護する上で重要な役割を果たす。
本稿では,データ不均衡にRandom Oversampling (RO) を用いる新しいMLベースのネットワーク侵入検出モデルと,次元削減のためのStacking Feature Embedding (PCA)を提案する。
CIC-IDS 2017データセットを使用すると、DT、RF、ETモデルは99.99%の精度に達し、DTとRFモデルはCIC-IDS 2018データセットで99.94%の精度が得られる。
論文 参考訳(メタデータ) (2024-01-22T05:49:41Z) - Leveraging a Probabilistic PCA Model to Understand the Multivariate
Statistical Network Monitoring Framework for Network Security Anomaly
Detection [64.1680666036655]
確率的生成モデルの観点からPCAに基づく異常検出手法を再検討する。
2つの異なるデータセットを用いて数学的モデルを評価した。
論文 参考訳(メタデータ) (2023-02-02T13:41:18Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Uncertainty-Aware Deep Calibrated Salient Object Detection [74.58153220370527]
既存のディープニューラルネットワークに基づくサルエントオブジェクト検出(SOD)手法は主に高いネットワーク精度の追求に重点を置いている。
これらの手法は、信頼不均衡問題として知られるネットワーク精度と予測信頼の間のギャップを見落としている。
我々は,不確実性を考慮した深部SODネットワークを導入し,深部SODネットワークの過信を防止するための2つの戦略を提案する。
論文 参考訳(メタデータ) (2020-12-10T23:28:36Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
本稿では,階層型エッジコンピューティング(HEC)システムに対する適応型異常検出手法を提案する。
本研究では,入力データから抽出した文脈情報に基づいてモデルを選択する適応的手法を設計し,異常検出を行う。
提案手法を実際のIoTデータセットを用いて評価し,検出タスクをクラウドにオフロードするのとほぼ同じ精度を維持しながら,検出遅延を84%削減できることを実証した。
論文 参考訳(メタデータ) (2020-01-10T05:29:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。