論文の概要: Label Augmentation for Neural Networks Robustness
- arxiv url: http://arxiv.org/abs/2408.01977v1
- Date: Sun, 4 Aug 2024 09:51:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 15:45:06.979407
- Title: Label Augmentation for Neural Networks Robustness
- Title(参考訳): ニューラルネットワークのロバスト性向上のためのラベル拡張
- Authors: Fatemeh Amerehi, Patrick Healy,
- Abstract要約: Label Augmentation (LA)は、共通の摂動と意図的な摂動の両方に対して堅牢性を高める。
LAを併用した場合のクリーンエラー率は,ベースラインと比較して最大23.29%向上した。
- 参考スコア(独自算出の注目度): 0.23020018305241333
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Out-of-distribution generalization can be categorized into two types: common perturbations arising from natural variations in the real world and adversarial perturbations that are intentionally crafted to deceive neural networks. While deep neural networks excel in accuracy under the assumption of identical distributions between training and test data, they often encounter out-of-distribution scenarios resulting in a significant decline in accuracy. Data augmentation methods can effectively enhance robustness against common corruptions, but they typically fall short in improving robustness against adversarial perturbations. In this study, we develop Label Augmentation (LA), which enhances robustness against both common and intentional perturbations and improves uncertainty estimation. Our findings indicate a Clean error rate improvement of up to 23.29% when employing LA in comparisons to the baseline. Additionally, it enhances robustness under common corruptions benchmark by up to 24.23%. When tested against FGSM and PGD attacks, improvements in adversarial robustness are noticeable, with enhancements of up to 53.18% for FGSM and 24.46% for PGD attacks.
- Abstract(参考訳): アウト・オブ・ディストリビューションの一般化は、現実世界の自然の変化から生じる共通の摂動と、ニューラルネットワークを欺くために意図的に作られた敵の摂動の2つのタイプに分類される。
深層ニューラルネットワークは、トレーニングデータとテストデータの間の同一の分布を仮定して精度が優れているが、アウト・オブ・ディストリビューションのシナリオに遭遇することが多いため、精度は大幅に低下する。
データ拡張手法は、一般的な汚職に対する堅牢性を効果的に向上させるが、通常、敵の摂動に対する堅牢性を改善するには不十分である。
本研究では,共通の摂動と意図的摂動に対するロバスト性を高め,不確実性評価を改善するラベル拡張(LA)を開発する。
LAを併用した場合のクリーンエラー率は,ベースラインと比較して最大23.29%向上した。
さらに、一般的な汚職ベンチマークでは、24.23%まで堅牢性を高める。
FGSMとPGD攻撃に対するテストでは、FGSMの最大53.18%、PGD攻撃の24.46%が強化された。
関連論文リスト
- Accurate and Reliable Predictions with Mutual-Transport Ensemble [46.368395985214875]
Kullback-Leibler (KL) を用いた共学習補助モデルの提案とクロスエントロピー損失の適応的正則化
MTEは精度と不確実性の両方を同時に向上させることができる。
例えば、CIFAR-100データセットでは、我々のResNet34/50上のMTEメソッドは、従来の最先端の手法に比べて大幅に改善された。
論文 参考訳(メタデータ) (2024-05-30T03:15:59Z) - Dynamic Perturbation-Adaptive Adversarial Training on Medical Image
Classification [9.039586043401972]
敵の例(AE)は生データと知覚不可能な類似性を示し、ネットワークの堅牢性に対する深刻な懸念を提起した。
本稿では,ATを動的学習環境に配置し,適応型データレベルの摂動を生成する動的摂動適応対向訓練(DPAAT)手法を提案する。
HAM10000データセットの総合的な試験により、DPAATはより堅牢性の向上と一般化保存を達成できただけでなく、平均精度と解釈可能性を大幅に向上した。
論文 参考訳(メタデータ) (2024-03-11T15:16:20Z) - The Effectiveness of Random Forgetting for Robust Generalization [21.163070161951868]
我々は,FOMO(Fordt to Mitigate Overfitting)と呼ばれる新しい学習パラダイムを導入する。
FOMOは、重みのサブセットをランダムに忘れる忘れ相と、一般化可能な特徴の学習を強調する再学習相とを交互に扱う。
実験の結果, FOMOは最良と最終ロバストなテスト精度のギャップを大幅に減らし, 頑健なオーバーフィッティングを緩和することがわかった。
論文 参考訳(メタデータ) (2024-02-18T23:14:40Z) - Generalizability of Adversarial Robustness Under Distribution Shifts [57.767152566761304]
本研究は, 実証的, 証明された敵対的堅牢性間の相互作用と, ドメインの一般化を両立させるための第一歩を踏み出した。
複数のドメインでロバストモデルをトレーニングし、その正確性とロバスト性を評価する。
本研究は, 現実の医療応用をカバーするために拡張され, 敵の増大は, クリーンデータ精度に最小限の影響を伴って, 強靭性の一般化を著しく促進する。
論文 参考訳(メタデータ) (2022-09-29T18:25:48Z) - Can pruning improve certified robustness of neural networks? [106.03070538582222]
ニューラルネット・プルーニングはディープ・ニューラル・ネットワーク(NN)の実証的ロバスト性を向上させることができることを示す。
実験の結果,NNを適切に刈り取ることで,その精度を8.2%まで向上させることができることがわかった。
さらに,認証された宝くじの存在が,従来の密集モデルの標準および認証された堅牢な精度に一致することを観察する。
論文 参考訳(メタデータ) (2022-06-15T05:48:51Z) - Improving Corruption and Adversarial Robustness by Enhancing Weak
Subnets [91.9346332103637]
本研究では,頑健性を向上させるために,トレーニング中の弱さを明確に識別し,強化する新しいロバストトレーニング手法を提案する。
具体的には、特に弱いものを見つけるための探索アルゴリズムを開発し、全ネットワークからの知識蒸留を通じてそれらを明示的に強化することを提案する。
EWSは、破損した画像に対するロバスト性を大幅に改善し、クリーンなデータの正確性も向上することを示す。
論文 参考訳(メタデータ) (2022-01-30T09:36:19Z) - Non-Singular Adversarial Robustness of Neural Networks [58.731070632586594]
小さな入力摂動に対する過敏性のため、アドリヤルロバスト性はニューラルネットワークにとって新たな課題となっている。
我々は,データ入力とモデル重みの共振レンズを用いて,ニューラルネットワークの非特異な対角性の概念を定式化する。
論文 参考訳(メタデータ) (2021-02-23T20:59:30Z) - Improving Calibration through the Relationship with Adversarial
Robustness [19.384119330332446]
対向ロバスト性とキャリブレーションの関係について検討する。
逆ロバスト性に基づく適応ラベリング(AR-AdaLS)を提案する。
本手法は,分布シフト下においても,分布内データの対角的ロバスト性を考慮し,モデルに対するキャリブレーションが向上することを見出した。
論文 参考訳(メタデータ) (2020-06-29T20:56:33Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Adversarial Robustness on In- and Out-Distribution Improves
Explainability [109.68938066821246]
RATIOは、Adversarial Training on In- and Out-distriionを通じて、堅牢性のためのトレーニング手順である。
RATIOはCIFAR10で最先端の$l$-adrialを実現し、よりクリーンな精度を維持している。
論文 参考訳(メタデータ) (2020-03-20T18:57:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。