論文の概要: Quantification of Uncertainties in Probabilistic Deep Neural Network by Implementing Boosting of Variational Inference
- arxiv url: http://arxiv.org/abs/2503.13909v1
- Date: Tue, 18 Mar 2025 05:11:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 14:17:53.462308
- Title: Quantification of Uncertainties in Probabilistic Deep Neural Network by Implementing Boosting of Variational Inference
- Title(参考訳): 変分推論のブースティングによる確率的深部ニューラルネットワークの不確かさの定量化
- Authors: Pavia Bera, Sanjukta Bhanja,
- Abstract要約: Boosted Bayesian Neural Networks (BBNN)は、ニューラルネットワークの重み分布近似を強化する新しいアプローチである。
BBNNは従来のニューラルネットワークに比べて5%高い精度を実現している。
- 参考スコア(独自算出の注目度): 0.38366697175402226
- License:
- Abstract: Modern neural network architectures have achieved remarkable accuracies but remain highly dependent on their training data, often lacking interpretability in their learned mappings. While effective on large datasets, they tend to overfit on smaller ones. Probabilistic neural networks, such as those utilizing variational inference, address this limitation by incorporating uncertainty estimation through weight distributions rather than point estimates. However, standard variational inference often relies on a single-density approximation, which can lead to poor posterior estimates and hinder model performance. We propose Boosted Bayesian Neural Networks (BBNN), a novel approach that enhances neural network weight distribution approximations using Boosting Variational Inference (BVI). By iteratively constructing a mixture of densities, BVI expands the approximating family, enabling a more expressive posterior that leads to improved generalization and uncertainty estimation. While this approach increases computational complexity, it significantly enhances accuracy an essential tradeoff, particularly in high-stakes applications such as medical diagnostics, where false negatives can have severe consequences. Our experimental results demonstrate that BBNN achieves ~5% higher accuracy compared to conventional neural networks while providing superior uncertainty quantification. This improvement highlights the effectiveness of leveraging a mixture-based variational family to better approximate the posterior distribution, ultimately advancing probabilistic deep learning.
- Abstract(参考訳): 現代のニューラルネットワークアーキテクチャは、目覚ましい精度を達成したが、トレーニングデータに大きく依存し続けており、しばしば学習されたマッピングの解釈可能性に欠けている。
大規模なデータセットでは有効だが、小さなデータセットでは過度に適合する傾向がある。
変分推論のような確率論的ニューラルネットワークは、点推定よりも重み分布による不確実性推定を取り入れることで、この制限に対処する。
しかし、標準変分推論は、しばしば単一密度近似に依存するため、後続推定が貧弱になり、モデルの性能が損なわれる可能性がある。
本稿では,Boosting Variational Inference (BVI) を用いたニューラルネットワークの重み分布近似手法であるBoosted Bayesian Neural Networks (BBNN)を提案する。
密度の混合を反復的に構築することにより、BVIは近似族を拡張し、より表現力のある後部を可能にし、一般化と不確実性の推定を改善する。
このアプローチは計算複雑性を増大させるが、特に偽陰性が深刻な結果をもたらす医学診断のような高度な応用において、重要なトレードオフとして精度を著しく向上させる。
実験の結果,BBNNの精度は従来のニューラルネットワークに比べて約5%高く,不確かさの定量化には優れていた。
この改良は、混合型変分族を利用して後部分布をよりよく近似し、最終的には確率的深層学習を推し進める効果を強調している。
関連論文リスト
- Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
ニューラルネットワークの予測は、アウト・オブ・ディストリビューション(OOD)入力に直面した場合、予測不可能で過信される傾向がある。
我々は、入力データがOODになるにつれて、ニューラルネットワークの予測が一定値に向かう傾向があることを観察する。
我々は、OOD入力の存在下でリスクに敏感な意思決定を可能にするために、私たちの洞察を実際に活用する方法を示します。
論文 参考訳(メタデータ) (2023-10-02T03:25:32Z) - Sparsifying Bayesian neural networks with latent binary variables and
normalizing flows [10.865434331546126]
潜伏二元系ベイズニューラルネットワーク(LBBNN)の2つの拡張について検討する。
まず、隠れたユニットを直接サンプリングするためにLRT(Local Reparametrization trick)を用いることで、より計算効率の良いアルゴリズムが得られる。
さらに, LBBNNパラメータの変動後分布の正規化フローを用いて, 平均体ガウス分布よりも柔軟な変動後分布を学習する。
論文 参考訳(メタデータ) (2023-05-05T09:40:28Z) - Toward Robust Uncertainty Estimation with Random Activation Functions [3.0586855806896045]
本稿では,ランダムアクティベーション関数(RAF)アンサンブルを用いた不確実性定量化手法を提案する。
RAF アンサンブルは、合成データセットと実世界のデータセットの両方において、最先端のアンサンブル不確実性定量化手法より優れている。
論文 参考訳(メタデータ) (2023-02-28T13:17:56Z) - Improved uncertainty quantification for neural networks with Bayesian
last layer [0.0]
不確実性定量化は機械学習において重要な課題である。
本稿では,BLL を用いた NN の対数乗算可能性の再構成を行い,バックプロパゲーションを用いた効率的なトレーニングを実現する。
論文 参考訳(メタデータ) (2023-02-21T20:23:56Z) - Confidence-Nets: A Step Towards better Prediction Intervals for
regression Neural Networks on small datasets [0.0]
そこで本研究では,予測の不確かさを推定し,精度を向上し,予測変動の間隔を与えるアンサンブル手法を提案する。
提案手法は様々なデータセットで検証され,ニューラルネットワークモデルの性能が大幅に向上した。
論文 参考訳(メタデータ) (2022-10-31T06:38:40Z) - Can pruning improve certified robustness of neural networks? [106.03070538582222]
ニューラルネット・プルーニングはディープ・ニューラル・ネットワーク(NN)の実証的ロバスト性を向上させることができることを示す。
実験の結果,NNを適切に刈り取ることで,その精度を8.2%まで向上させることができることがわかった。
さらに,認証された宝くじの存在が,従来の密集モデルの標準および認証された堅牢な精度に一致することを観察する。
論文 参考訳(メタデータ) (2022-06-15T05:48:51Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
ニューラルネットワークは、普遍関数近似器として機能することで、複雑なデータ分布から学習することに成功した。
彼らはしばしば予測に自信過剰であり、不正確で誤った確率的予測に繋がる。
本稿では,モデルが不当に過信である特徴空間の領域を探索し,それらの予測のエントロピーをラベルの以前の分布に対して条件的に高める手法を提案する。
論文 参考訳(メタデータ) (2021-02-22T07:02:37Z) - Ramifications of Approximate Posterior Inference for Bayesian Deep
Learning in Adversarial and Out-of-Distribution Settings [7.476901945542385]
ベイジアン深層学習モデルが従来のニューラルネットワークよりわずかに優れていることを示す。
予備的な調査は、初期化、アーキテクチャ、アクティベーション関数の選択によるバイアスの潜在的固有の役割を示している。
論文 参考訳(メタデータ) (2020-09-03T16:58:15Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
本稿では,予測の多様性を奨励することで,ニューラルネットワークの効果的なアンサンブルを生成する問題をターゲットにする。
そこで本研究では,潜伏変数の学習における逆損失の多様性を明示的に最適化し,マルチモーダルデータのモデリングに必要な出力予測の多様性を得る。
最も競争力のあるベースラインと比較して、データ分布の変化の下で、分類精度が大幅に向上した。
論文 参考訳(メタデータ) (2020-03-10T03:10:41Z) - Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks [65.24701908364383]
我々は、ReLUネットワーク上の不確実性に対する十分条件が「少しベイズ校正される」ことを示す。
さらに,これらの知見を,共通深部ReLUネットワークとLaplace近似を用いた各種標準実験により実証的に検証した。
論文 参考訳(メタデータ) (2020-02-24T08:52:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。