Multiview learning with twin parametric margin SVM
- URL: http://arxiv.org/abs/2408.01981v2
- Date: Sun, 11 Aug 2024 13:00:14 GMT
- Title: Multiview learning with twin parametric margin SVM
- Authors: A. Quadir, M. Tanveer,
- Abstract summary: Multiview learning (MVL) seeks to leverage the benefits of diverse perspectives to complement each other.
We propose multiview twin parametric margin support vector machine (MvTPMSVM)
MvTPMSVM constructs parametric margin hyperplanes corresponding to both classes, aiming to regulate and manage the impact of the heteroscedastic noise structure.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multiview learning (MVL) seeks to leverage the benefits of diverse perspectives to complement each other, effectively extracting and utilizing the latent information within the dataset. Several twin support vector machine-based MVL (MvTSVM) models have been introduced and demonstrated outstanding performance in various learning tasks. However, MvTSVM-based models face significant challenges in the form of computational complexity due to four matrix inversions, the need to reformulate optimization problems in order to employ kernel-generated surfaces for handling non-linear cases, and the constraint of uniform noise assumption in the training data. Particularly in cases where the data possesses a heteroscedastic error structure, these challenges become even more pronounced. In view of the aforementioned challenges, we propose multiview twin parametric margin support vector machine (MvTPMSVM). MvTPMSVM constructs parametric margin hyperplanes corresponding to both classes, aiming to regulate and manage the impact of the heteroscedastic noise structure existing within the data. The proposed MvTPMSVM model avoids the explicit computation of matrix inversions in the dual formulation, leading to enhanced computational efficiency. We perform an extensive assessment of the MvTPMSVM model using benchmark datasets such as UCI, KEEL, synthetic, and Animals with Attributes (AwA). Our experimental results, coupled with rigorous statistical analyses, confirm the superior generalization capabilities of the proposed MvTPMSVM model compared to the baseline models. The source code of the proposed MvTPMSVM model is available at \url{https://github.com/mtanveer1/MvTPMSVM}.
Related papers
- Balanced Multi-view Clustering [56.17836963920012]
Multi-view clustering (MvC) aims to integrate information from different views to enhance the capability of the model in capturing the underlying data structures.
The widely used joint training paradigm in MvC is potentially not fully leverage the multi-view information.
We propose a novel balanced multi-view clustering (BMvC) method, which introduces a view-specific contrastive regularization (VCR) to modulate the optimization of each view.
arXiv Detail & Related papers (2025-01-05T14:42:47Z) - R-MTLLMF: Resilient Multi-Task Large Language Model Fusion at the Wireless Edge [78.26352952957909]
Multi-task large language models (MTLLMs) are important for many applications at the wireless edge, where users demand specialized models to handle multiple tasks efficiently.
The concept of model fusion via task vectors has emerged as an efficient approach for combining fine-tuning parameters to produce an MTLLM.
In this paper, the problem of enabling edge users to collaboratively craft such MTLMs via tasks vectors is studied, under the assumption of worst-case adversarial attacks.
arXiv Detail & Related papers (2024-11-27T10:57:06Z) - Granular Ball Twin Support Vector Machine [0.0]
Nonparametric likelihood Estimator in MixtureTwin support vector machine (TSVM) is an emerging machine learning model with versatile applicability in classification and regression endeavors.
TSVM confronts formidable obstacles to its efficiency and applicability on large-scale datasets.
We propose the granular ball twin support vector machine (GBTSVM) and a novel large-scale granular ball twin support vector machine (LS-GBTSVM)
We conduct a comprehensive evaluation of GBTSVM and LS-GBTSVM models on benchmark datasets from UCI, KEEL, and NDC datasets.
arXiv Detail & Related papers (2024-10-07T06:20:36Z) - Enhancing Multiview Synergy: Robust Learning by Exploiting the Wave Loss Function with Consensus and Complementarity Principles [0.0]
This paper introduces Wave-MvSVM, a novel multiview support vector machine framework leveraging the wave loss (W-loss) function.
Wave-MvSVM ensures a more comprehensive and resilient learning process by integrating both consensus and complementarity principles.
Extensive empirical evaluations across diverse datasets demonstrate the superior performance of Wave-MvSVM.
arXiv Detail & Related papers (2024-08-13T11:25:22Z) - Preventing Model Collapse in Gaussian Process Latent Variable Models [11.45681373843122]
This paper theoretically examines the impact of projection variance on model collapse through the lens of a linear FourierVM.
We tackle model collapse due to inadequate kernel flexibility by integrating the spectral mixture (SM) kernel and a differentiable random feature (RFF) kernel approximation.
The proposedVM, named advisedRFLVM, is evaluated across diverse datasets and consistently outperforms various competing models.
arXiv Detail & Related papers (2024-04-02T06:58:41Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Low-Rank Multitask Learning based on Tensorized SVMs and LSSVMs [65.42104819071444]
Multitask learning (MTL) leverages task-relatedness to enhance performance.
We employ high-order tensors, with each mode corresponding to a task index, to naturally represent tasks referenced by multiple indices.
We propose a general framework of low-rank MTL methods with tensorized support vector machines (SVMs) and least square support vector machines (LSSVMs)
arXiv Detail & Related papers (2023-08-30T14:28:26Z) - Online Multi-Task Learning with Recursive Least Squares and Recursive Kernel Methods [50.67996219968513]
We introduce two novel approaches for Online Multi-Task Learning (MTL) Regression Problems.
We achieve exact and approximate recursions with quadratic per-instance cost on the dimension of the input space.
We compare our online MTL methods to other contenders in a real-world wind speed forecasting case study.
arXiv Detail & Related papers (2023-08-03T01:41:34Z) - Enhancing Pattern Classification in Support Vector Machines through
Matrix Formulation [0.0]
The reliance on vector-based formulations in existing SVM-based models poses limitations regarding flexibility and ease of incorporating additional terms to handle specific challenges.
We introduce a matrix formulation for SVM that effectively addresses these constraints.
Experimental evaluations on multilabel and multiclass datasets demonstrate that Matrix SVM achieves superior time efficacy.
arXiv Detail & Related papers (2023-07-18T15:56:39Z) - Robust Twin Parametric Margin Support Vector Machine for Multiclass Classification [0.0]
We present novel Twin Parametric Margin Support Vector Machine (TPMSVM) models to tackle the problem of multiclass classification.
We construct bounded-by-norm uncertainty sets around each sample and derive the robust counterpart of deterministic models.
We test the proposed TPMSVM methodology on real-world datasets, showing the good performance of the approach.
arXiv Detail & Related papers (2023-06-09T19:27:24Z) - Estimating Average Treatment Effects with Support Vector Machines [77.34726150561087]
Support vector machine (SVM) is one of the most popular classification algorithms in the machine learning literature.
We adapt SVM as a kernel-based weighting procedure that minimizes the maximum mean discrepancy between the treatment and control groups.
We characterize the bias of causal effect estimation arising from this trade-off, connecting the proposed SVM procedure to the existing kernel balancing methods.
arXiv Detail & Related papers (2021-02-23T20:22:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.