論文の概要: MetaWearS: A Shortcut in Wearable Systems Lifecycle with Only a Few Shots
- arxiv url: http://arxiv.org/abs/2408.01988v1
- Date: Sun, 4 Aug 2024 11:00:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 15:45:06.957983
- Title: MetaWearS: A Shortcut in Wearable Systems Lifecycle with Only a Few Shots
- Title(参考訳): MetaWearS:少しのショットしか持たないウェアラブルシステムライフサイクルのショートカット
- Authors: Alireza Amirshahi, Maedeh H. Toosi, Siamak Mohammadi, Stefano Albini, Pasquale Davide Schiavone, Giovanni Ansaloni, Amir Aminifar, David Atienza,
- Abstract要約: 本稿では,メタ学習手法であるMetaWearSを提案する。
発作性てんかんの検出と心房細動の診断にMetaWearSが有用であった2症例について検討した。
- 参考スコア(独自算出の注目度): 5.93278685306981
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Wearable systems provide continuous health monitoring and can lead to early detection of potential health issues. However, the lifecycle of wearable systems faces several challenges. First, effective model training for new wearable devices requires substantial labeled data from various subjects collected directly by the wearable. Second, subsequent model updates require further extensive labeled data for retraining. Finally, frequent model updating on the wearable device can decrease the battery life in long-term data monitoring. Addressing these challenges, in this paper, we propose MetaWearS, a meta-learning method to reduce the amount of initial data collection required. Moreover, our approach incorporates a prototypical updating mechanism, simplifying the update process by modifying the class prototype rather than retraining the entire model. We explore the performance of MetaWearS in two case studies, namely, the detection of epileptic seizures and the detection of atrial fibrillation. We show that by fine-tuning with just a few samples, we achieve 70% and 82% AUC for the detection of epileptic seizures and the detection of atrial fibrillation, respectively. Compared to a conventional approach, our proposed method performs better with up to 45% AUC. Furthermore, updating the model with only 16 minutes of additional labeled data increases the AUC by up to 5.3%. Finally, MetaWearS reduces the energy consumption for model updates by 456x and 418x for epileptic seizure and AF detection, respectively.
- Abstract(参考訳): ウェアラブルシステムは継続的な健康モニタリングを提供し、潜在的な健康問題の早期発見につながる可能性がある。
しかし、ウェアラブルシステムのライフサイクルはいくつかの課題に直面している。
第一に、新しいウェアラブルデバイスのための効果的なモデルトレーニングは、ウェアラブルによって直接収集された様々な被験者からの実質的なラベル付きデータを必要とする。
第二に、後続のモデル更新は、再トレーニングのためにさらに広範なラベル付きデータを必要とする。
最後に、ウェアラブルデバイスの頻繁なモデル更新は、長期データ監視におけるバッテリ寿命を減少させる可能性がある。
本稿では,初期データ収集量を削減するメタ学習手法であるMetaWearSを提案する。
さらに,本手法では,モデル全体をトレーニングするのではなく,クラスプロトタイプを変更することで,更新プロセスを簡素化する。
発作性てんかんの検出と心房細動の診断にMetaWearSが有用であった2症例について検討した。
少数の試料を微調整し, てんかん発作の検出と心房細動の検出において, 70%, 82%のAUCが得られた。
従来の手法と比較して,提案手法は最大45%のAUCで性能が向上した。
さらに、ラベル付きデータを16分追加するだけでモデルを更新すると、AUCは最大5.3%向上する。
最後に、MetaWearSは、それぞれてんかん発作とAF検出のために、モデル更新のエネルギー消費量を456xと418xに削減する。
関連論文リスト
- BISeizuRe: BERT-Inspired Seizure Data Representation to Improve Epilepsy Monitoring [13.35453284825286]
本研究では,BERTモデルを用いた脳波による発作検出の新しい手法を提案する。
BENDRは2段階のトレーニングプロセス、事前トレーニング、微調整を行う。
最適化されたモデルでは性能が大幅に向上し、0.23 FP/h、2.5$times$はベースラインモデルよりも低く、感度は低いが許容できる。
論文 参考訳(メタデータ) (2024-06-27T14:09:10Z) - SincVAE: a New Approach to Improve Anomaly Detection on EEG Data Using SincNet and Variational Autoencoder [0.0]
本研究では,脳波データからてんかん発作を検出するための半教師付きアプローチを提案する。
以上の結果から,SncVAEは脳波データにおける発作検出を改善し,早期発作の早期発見と術後経過のモニタリングが可能であることが示唆された。
論文 参考訳(メタデータ) (2024-06-25T13:21:01Z) - Improving Diffusion Models for ECG Imputation with an Augmented Template
Prior [43.6099225257178]
ノイズと品質の悪い録音は、モバイルヘルスシステムを使って収集された信号にとって大きな問題である。
近年の研究では、確率的時系列モデルによるECGの欠落値の計算が検討されている。
本稿では,様々な健康状態の事前情報として,テンプレート誘導型拡散確率モデル(DDPM)PulseDiffを提案する。
論文 参考訳(メタデータ) (2023-10-24T11:34:15Z) - Early Warning Prediction with Automatic Labeling in Epilepsy Patients [4.6700203020828885]
本稿では,初期文字信号の予測を改善するメタ学習フレームワークを提案する。
提案された双方向最適化フレームワークは、初期段階におけるノイズの多いデータを自動的にラベル付けするのに役立つ。
論文 参考訳(メタデータ) (2023-10-09T18:12:46Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
弱点アノテーションを用いたドメイン適応型シナプス検出のためのフレームワークであるAdaSynを提案する。
I SBI 2023のWASPSYNチャレンジでは、我々の手法が第1位にランクインした。
論文 参考訳(メタデータ) (2023-08-31T05:05:53Z) - Leveraging Unlabelled Data in Multiple-Instance Learning Problems for
Improved Detection of Parkinsonian Tremor in Free-Living Conditions [80.88681952022479]
本稿では,半教師付き学習とマルチスタンス学習を組み合わせた新しい手法を提案する。
本研究は,454被験者の非競合データを活用することにより,物体ごとの震動検出において大きな性能向上が達成できることを示す。
論文 参考訳(メタデータ) (2023-04-29T12:25:10Z) - Augment and Criticize: Exploring Informative Samples for Semi-Supervised
Monocular 3D Object Detection [64.65563422852568]
我々は、一般的な半教師付きフレームワークを用いて、難解な単分子3次元物体検出問題を改善する。
我々は、ラベルのないデータから豊富な情報的サンプルを探索する、新しい、シンプルで効果的なAugment and Criticize'フレームワークを紹介します。
3DSeMo_DLEと3DSeMo_FLEXと呼ばれる2つの新しい検出器は、KITTIのAP_3D/BEV(Easy)を3.5%以上改善した。
論文 参考訳(メタデータ) (2023-03-20T16:28:15Z) - Inertial Hallucinations -- When Wearable Inertial Devices Start Seeing
Things [82.15959827765325]
環境支援型生活(AAL)のためのマルチモーダルセンサフュージョンの新しいアプローチを提案する。
我々は、標準マルチモーダルアプローチの2つの大きな欠点、限られた範囲のカバレッジ、信頼性の低下に対処する。
我々の新しいフレームワークは、三重項学習によるモダリティ幻覚の概念を融合させ、異なるモダリティを持つモデルを訓練し、推論時に欠落したセンサーに対処する。
論文 参考訳(メタデータ) (2022-07-14T10:04:18Z) - Benchmarking Detection Transfer Learning with Vision Transformers [60.97703494764904]
オブジェクト検出メソッドの複雑さは、ViT(Vision Transformer)モデルのような新しいアーキテクチャが到着するときに、ベンチマークを非簡単にする。
本研究では,これらの課題を克服し,標準的なVTモデルをMask R-CNNのバックボーンとして活用する訓練手法を提案する。
その結果,最近のマスキングに基づく教師なし学習手法は,COCOにおける説得力のあるトランスファー学習改善をもたらす可能性が示唆された。
論文 参考訳(メタデータ) (2021-11-22T18:59:15Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
外乱検出(OD)は、一般的なサンプルから異常物体を識別するための機械学習(ML)タスクである。
そこで我々は,SUODと呼ばれるモジュール型加速度システムを提案する。
論文 参考訳(メタデータ) (2020-03-11T00:22:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。