論文の概要: What Happens Without Background? Constructing Foreground-Only Data for Fine-Grained Tasks
- arxiv url: http://arxiv.org/abs/2408.01998v1
- Date: Sun, 4 Aug 2024 11:51:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 15:45:06.950943
- Title: What Happens Without Background? Constructing Foreground-Only Data for Fine-Grained Tasks
- Title(参考訳): 背景のないものは何か? 細粒度タスクのための前景専用データの構築
- Authors: Yuetian Wang, Wenjin Hou, Qinmu Peng, Xinge You,
- Abstract要約: きめ細かい認識は、サンプルに存在する識別情報に基づいて類似のサブクラスを区別することを目的としている。
一般的な方法は、しばしば背景に誤って焦点を合わせ、被写体から真に効果的な識別情報の取得を無視する。
本研究では,SAMとDeticの機能を活用して,前景のみの詳細なデータセットを作成するパイプラインを提案する。
- 参考スコア(独自算出の注目度): 12.486263801451503
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fine-grained recognition, a pivotal task in visual signal processing, aims to distinguish between similar subclasses based on discriminative information present in samples. However, prevailing methods often erroneously focus on background areas, neglecting the capture of genuinely effective discriminative information from the subject, thus impeding practical application. To facilitate research into the impact of background noise on models and enhance their ability to concentrate on the subject's discriminative features, we propose an engineered pipeline that leverages the capabilities of SAM and Detic to create fine-grained datasets with only foreground subjects, devoid of background. Extensive cross-experiments validate this approach as a preprocessing step prior to training, enhancing algorithmic performance and holding potential for further modal expansion of the data.
- Abstract(参考訳): 視覚信号処理における重要なタスクである微粒化認識は、サンプルに存在する識別情報に基づいて類似のサブクラスを識別することを目的としている。
しかし、主流の手法は、しばしば背景に誤って焦点を合わせ、真に有効な識別情報の収集を無視し、実用的な応用を妨げている。
背景雑音がモデルに与える影響の研究を容易にし,被験者の識別的特徴に集中する能力を高めるために,SAMとDeticの能力を生かした設計パイプラインを提案する。
大規模なクロス実験は、このアプローチをトレーニング前の前処理ステップとして検証し、アルゴリズムの性能を高め、データのさらなるモーダル展開の可能性を秘めている。
関連論文リスト
- Generative Edge Detection with Stable Diffusion [52.870631376660924]
エッジ検出は一般的に、主に識別法によって対処されるピクセルレベルの分類問題と見なされる。
本稿では、事前学習した安定拡散モデルのポテンシャルを十分に活用して、GED(Generative Edge Detector)という新しい手法を提案する。
複数のデータセットに対して広範な実験を行い、競争性能を達成する。
論文 参考訳(メタデータ) (2024-10-04T01:52:23Z) - Data Adaptive Traceback for Vision-Language Foundation Models in Image Classification [34.37262622415682]
我々はData Adaptive Tracebackと呼ばれる新しい適応フレームワークを提案する。
具体的には、ゼロショット法を用いて、事前学習データの最もダウンストリームなタスク関連サブセットを抽出する。
我々は、擬似ラベルに基づく半教師付き手法を採用し、事前学習画像の再利用と、半教師付き学習における確証バイアス問題に対処するための視覚言語コントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2024-07-11T18:01:58Z) - Learning with Noisy Foundation Models [95.50968225050012]
本論文は、事前学習データセットにおけるノイズの性質を包括的に理解し分析する最初の研究である。
雑音の悪影響を緩和し、一般化を改善するため、特徴空間に適応するチューニング法(NMTune)を提案する。
論文 参考訳(メタデータ) (2024-03-11T16:22:41Z) - Explainable Attention for Few-shot Learning and Beyond [7.044125601403848]
本稿では,説明可能な難易度発見,特に数発の学習シナリオに適した新しいフレームワークを提案する。
提案手法では、深層強化学習を用いて、生の入力データに直接影響するハードアテンションの概念を実装している。
論文 参考訳(メタデータ) (2023-10-11T18:33:17Z) - Understanding and Mitigating the Label Noise in Pre-training on
Downstream Tasks [91.15120211190519]
本稿では、事前学習データセットにおけるノイズの性質を理解し、下流タスクへの影響を軽減することを目的とする。
雑音の悪影響を軽減するために特徴空間に適応する軽量ブラックボックスチューニング法(NMTune)を提案する。
論文 参考訳(メタデータ) (2023-09-29T06:18:15Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
表情認識のためのSFUDA法を提案する。
本手法は,自己教師付き事前学習を利用して,対象データから優れた特徴表現を学習する。
提案手法の有効性を4つの適応方式で検証し,FERに適用した場合,既存のSFUDA法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:24:50Z) - Data-driven Meta-set Based Fine-Grained Visual Classification [61.083706396575295]
本稿では, ノイズの多いWeb画像に対して, 微粒化認識のためのデータ駆動型メタセットベースアプローチを提案する。
具体的には、少量のクリーンなメタセットでガイドされ、メタラーニング方式で選択ネットを訓練し、分布内および分布外ノイズ画像の識別を行う。
論文 参考訳(メタデータ) (2020-08-06T03:04:16Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
ネットワークトレーニングにおいて,信頼度の高いサンプルを多量のラベルのないデータで活用するためのオムニ教師付き学習を提案する。
我々は,新しいデータセットが学習したFERモデルの能力を大幅に向上させることができることを実験的に検証した。
そこで本研究では,生成したデータセットを複数のクラスワイド画像に圧縮するために,データセット蒸留戦略を適用することを提案する。
論文 参考訳(メタデータ) (2020-05-18T09:36:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。