論文の概要: Latency-Aware Resource Allocation for Mobile Edge Generation and Computing via Deep Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2408.02047v1
- Date: Sun, 4 Aug 2024 14:53:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 15:25:25.464368
- Title: Latency-Aware Resource Allocation for Mobile Edge Generation and Computing via Deep Reinforcement Learning
- Title(参考訳): 深層強化学習によるモバイルエッジ生成とコンピューティングのためのレイテンシを考慮したリソース割り当て
- Authors: Yinyu Wu, Xuhui Zhang, Jinke Ren, Huijun Xing, Yanyan Shen, Shuguang Cui,
- Abstract要約: 本稿では,MEGCシステムにおける共同通信,計算,AIGC資源割り当て問題について検討する。
レイテンシの問題が最初に定式化され、モバイルユーザのサービス品質が向上する。
そこで本研究では,これを効率的に解くための深層強化学習に基づくアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 46.98737813782529
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, the integration of mobile edge computing (MEC) and generative artificial intelligence (GAI) technology has given rise to a new area called mobile edge generation and computing (MEGC), which offers mobile users heterogeneous services such as task computing and content generation. In this letter, we investigate the joint communication, computation, and the AIGC resource allocation problem in an MEGC system. A latency minimization problem is first formulated to enhance the quality of service for mobile users. Due to the strong coupling of the optimization variables, we propose a new deep reinforcement learning-based algorithm to solve it efficiently. Numerical results demonstrate that the proposed algorithm can achieve lower latency than two baseline algorithms.
- Abstract(参考訳): 近年、モバイルエッジコンピューティング(MEC)と生成人工知能(GAI)技術の統合により、モバイルエッジ生成・コンピューティング(MEGC)と呼ばれる新しい分野が生まれ、タスクコンピューティングやコンテンツ生成といった異種サービスを提供している。
本稿では,MEGCシステムにおける共同通信,計算,AIGC資源割り当て問題について検討する。
レイテンシの最小化問題は、まずモバイルユーザーのサービス品質を高めるために定式化される。
最適化変数の強い結合により,より効率的に解ける深部強化学習に基づくアルゴリズムを提案する。
数値計算により,提案アルゴリズムは2つのベースラインアルゴリズムよりも低レイテンシを実現することができることを示した。
関連論文リスト
- Two-Timescale Model Caching and Resource Allocation for Edge-Enabled AI-Generated Content Services [55.0337199834612]
Generative AI(GenAI)は、カスタマイズされたパーソナライズされたAI生成コンテンツ(AIGC)サービスを可能にするトランスフォーメーション技術として登場した。
これらのサービスは数十億のパラメータを持つGenAIモデルの実行を必要とし、リソース制限の無線エッジに重大な障害を生じさせる。
我々は、AIGC品質とレイテンシメトリクスのトレードオフをバランスさせるために、AIGCサービスのジョイントモデルキャッシングとリソースアロケーションの定式化を導入する。
論文 参考訳(メタデータ) (2024-11-03T07:01:13Z) - Mobility and Cost Aware Inference Accelerating Algorithm for Edge
Intelligence [24.512525338942158]
近年,エッジインテリジェンス(EI)が広く採用されている。デバイス,エッジサーバ,クラウド間のモデルを分割することで,EIの性能が大幅に向上する。
ユーザモビリティのないモデルセグメンテーションは,これまでにも深く研究されてきた。
本稿では,エッジでの推論を高速化するためのモビリティとコストを考慮したモデルセグメンテーションと資源配分アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-12-27T10:04:02Z) - Offloading and Quality Control for AI Generated Content Services in 6G Mobile Edge Computing Networks [18.723955271182007]
本稿では, 逆拡散段階における拡散モデルのオフロード決定, 計算時間, 拡散ステップに対する共同最適化アルゴリズムを提案する。
実験結果から,提案アルゴリズムはベースラインよりも優れた継手最適化性能が得られることが示された。
論文 参考訳(メタデータ) (2023-12-11T08:36:27Z) - Multi-Resource Allocation for On-Device Distributed Federated Learning
Systems [79.02994855744848]
本研究は,デバイス上の分散フェデレーション学習(FL)システムにおいて,レイテンシとエネルギー消費の重み付け和を最小化する分散マルチリソース割り当て方式を提案する。
システム内の各モバイルデバイスは、指定された領域内でモデルトレーニングプロセスを実行し、それぞれパラメータの導出とアップロードを行うための計算と通信資源を割り当てる。
論文 参考訳(メタデータ) (2022-11-01T14:16:05Z) - Distributed Reinforcement Learning for Privacy-Preserving Dynamic Edge
Caching [91.50631418179331]
MECネットワークにおけるデバイスのキャッシュヒット率を最大化するために,プライバシ保護型分散ディープポリシー勾配(P2D3PG)を提案する。
分散最適化をモデルフリーなマルコフ決定プロセス問題に変換し、人気予測のためのプライバシー保護フェデレーション学習手法を導入する。
論文 参考訳(メタデータ) (2021-10-20T02:48:27Z) - Multi-Agent Reinforcement Learning Based Coded Computation for Mobile Ad
Hoc Computing [6.94732606123235]
マルチエージェント強化学習(MARL)に基づく新しい符号化計算方式を提案する。
MARLには、ネットワーク変更への適応性、高い効率性、不確実なシステム障害に対する堅牢性など、多くの有望な特徴がある。
包括的シミュレーション研究により,提案手法は最先端分散コンピューティングスキームを上回ることができることが示された。
論文 参考訳(メタデータ) (2021-04-15T15:50:57Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
モバイルエッジコンピューティング(MEC)は、AIアプリケーションに自然なプラットフォームを提供します。
再構成可能なインテリジェントサーフェス(RIS)の助けを借りて、MECで機械学習タスクを実行するインフラストラクチャを提示します。
具体的には,モバイルユーザの送信パワー,基地局のビームフォーミングベクトル,risの位相シフト行列を共同で最適化することにより,参加ユーザの学習誤差を最小化する。
論文 参考訳(メタデータ) (2020-12-25T07:08:50Z) - A Machine Learning Approach for Task and Resource Allocation in Mobile
Edge Computing Based Networks [108.57859531628264]
無線ネットワークにおいて,共同作業,スペクトル,送信電力配分問題について検討する。
提案アルゴリズムは、標準Q-ラーニングアルゴリズムと比較して、収束に必要なイテレーション数と全ユーザの最大遅延を最大18%、11.1%削減することができる。
論文 参考訳(メタデータ) (2020-07-20T13:46:42Z) - Multi-agent Reinforcement Learning for Resource Allocation in IoT
networks with Edge Computing [16.129649374251088]
エンドユーザーが計算をオフロードするのは、スペクトルとリソースに対する大きな要求のためである。
本稿では,IoTエッジコンピューティングネットワークにおけるリソース割り当てを伴うオフロード機構をゲームとして定式化することによって検討する。
論文 参考訳(メタデータ) (2020-04-05T20:59:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。