論文の概要: The Cost of Learning: Efficiency vs. Efficacy of Learning-Based RRM for
6G
- arxiv url: http://arxiv.org/abs/2211.16915v1
- Date: Wed, 30 Nov 2022 11:26:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-01 18:11:02.852771
- Title: The Cost of Learning: Efficiency vs. Efficacy of Learning-Based RRM for
6G
- Title(参考訳): 学習コスト:6g学習におけるrrmの有効性と効率性
- Authors: Seyyidahmed Lahmer, Federico Chiariotti, Andrea Zanella
- Abstract要約: 深層強化学習(DRL)は、複雑なネットワークにおける効率的な資源管理戦略を自動学習するための貴重なソリューションとなっている。
多くのシナリオでは、学習タスクはクラウドで実行され、経験サンプルはエッジノードまたはユーザによって直接生成される。
これにより、効果的な戦略に向けて収束をスピードアップする必要性と、学習サンプルの送信にリソースの割り当てが必要となることの間に摩擦が生じます。
本稿では,学習とデータプレーン間の動的バランス戦略を提案する。これにより,集中型学習エージェントは,効率的な資源配分戦略に迅速に収束することができる。
- 参考スコア(独自算出の注目度): 10.28841351455586
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the past few years, Deep Reinforcement Learning (DRL) has become a
valuable solution to automatically learn efficient resource management
strategies in complex networks. In many scenarios, the learning task is
performed in the Cloud, while experience samples are generated directly by edge
nodes or users. Therefore, the learning task involves some data exchange which,
in turn, subtracts a certain amount of transmission resources from the system.
This creates a friction between the need to speed up convergence towards an
effective strategy, which requires the allocation of resources to transmit
learning samples, and the need to maximize the amount of resources used for
data plane communication, maximizing users' Quality of Service (QoS), which
requires the learning process to be efficient, i.e., minimize its overhead. In
this paper, we investigate this trade-off and propose a dynamic balancing
strategy between the learning and data planes, which allows the centralized
learning agent to quickly converge to an efficient resource allocation strategy
while minimizing the impact on QoS. Simulation results show that the proposed
method outperforms static allocation methods, converging to the optimal policy
(i.e., maximum efficacy and minimum overhead of the learning plane) in the long
run.
- Abstract(参考訳): 近年, 深層強化学習(DRL)は, 複雑なネットワークにおける効率的な資源管理戦略を自動学習する上で, 有用なソリューションとなっている。
多くのシナリオでは、クラウドで学習タスクが実行され、経験サンプルはエッジノードやユーザによって直接生成される。
したがって、学習タスクは何らかのデータ交換を伴い、システムから一定の量の送信リソースを減算する。
これは、学習サンプルを送信するためのリソースの割り当てを必要とする効果的な戦略への収束をスピードアップする必要性と、データプレーン通信に使用されるリソースの最大化、学習プロセスの効率性、すなわちオーバーヘッドを最小限にすることを必要とするユーザのQuality of Service(QoS)の最大化との摩擦を生み出す。
本稿では,このトレードオフを考察し,学習エージェントがQoSへの影響を最小限に抑えつつ,効率的な資源配分戦略に迅速に収束することのできる,学習とデータプレーン間の動的バランス戦略を提案する。
シミュレーションの結果,提案手法が静的割当法を上回っており,学習面の最大有効性や最小オーバーヘッドといった最適方針に収束していることがわかった。
関連論文リスト
- Decentralized Learning Strategies for Estimation Error Minimization with Graph Neural Networks [94.2860766709971]
統計的に同一性を持つ無線ネットワークにおける自己回帰的マルコフ過程のサンプリングとリモート推定の課題に対処する。
我々のゴールは、分散化されたスケーラブルサンプリングおよび送信ポリシーを用いて、時間平均推定誤差と/または情報の年齢を最小化することである。
論文 参考訳(メタデータ) (2024-04-04T06:24:11Z) - REBOOT: Reuse Data for Bootstrapping Efficient Real-World Dexterous
Manipulation [61.7171775202833]
本稿では,強化学習による巧妙な操作スキルの学習を効率化するシステムを提案する。
我々のアプローチの主な考え方は、サンプル効率のRLとリプレイバッファブートストラップの最近の進歩の統合である。
本システムでは,実世界の学習サイクルを,模倣に基づくピックアップポリシを通じて学習されたリセットを組み込むことで完遂する。
論文 参考訳(メタデータ) (2023-09-06T19:05:31Z) - Fast Context Adaptation in Cost-Aware Continual Learning [10.515324071327903]
5GとBeyondネットワークは、より複雑な学習エージェントを必要とし、学習プロセス自体が、コミュニケーションや計算リソースのためにユーザと競合することになるかもしれない。
一方、学習プロセスは、効率的な戦略に迅速に収束するためのリソースを必要とし、一方、学習プロセスは、ユーザのデータプレーンから可能な限り少ないリソースを取らずに、ユーザのリソースを損なわないように、効率的でなければならない。
本稿では,データプレーンに割り当てられたリソースと学習用に確保されたリソースのバランスをとるための動的戦略を提案する。
論文 参考訳(メタデータ) (2023-06-06T17:46:48Z) - RHFedMTL: Resource-Aware Hierarchical Federated Multi-Task Learning [11.329273673732217]
フェデレーション学習は、セキュリティを備えた大規模な分散ノード上でAIを可能にする効果的な方法である。
複数の基地局(BS)と端末をまたいだマルチタスク学習を維持しながら、プライバシを確保することは困難である。
本稿では, セルラーワークの自然雲-BS-末端階層に着想を得て, 資源を考慮した階層型MTL (RHFedMTL) ソリューションを提案する。
論文 参考訳(メタデータ) (2023-06-01T13:49:55Z) - Optimal transfer protocol by incremental layer defrosting [66.76153955485584]
トランスファーラーニングは、限られた量のデータでモデルトレーニングを可能にする強力なツールである。
最も単純な転送学習プロトコルは、データリッチなソースタスクで事前訓練されたネットワークの機能抽出層を凍結する。
このプロトコルは、しばしば準最適であり、事前学習されたネットワークの小さな部分を凍結したままにしておくと、最大の性能向上が達成される可能性がある。
論文 参考訳(メタデータ) (2023-03-02T17:32:11Z) - Human-Inspired Framework to Accelerate Reinforcement Learning [1.6317061277457001]
強化学習(Reinforcement Learning, RL)は、データサイエンスの意思決定において重要であるが、サンプルの不効率に悩まされている。
本稿では,RLアルゴリズムのサンプル効率を向上させるための,人間に触発された新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-28T13:15:04Z) - Skill-based Meta-Reinforcement Learning [65.31995608339962]
本研究では,長期的スパース・リワードタスクにおけるメタラーニングを実現する手法を提案する。
私たちの中核となる考え方は、メタ学習中にオフラインデータセットから抽出された事前経験を活用することです。
論文 参考訳(メタデータ) (2022-04-25T17:58:19Z) - Lean Evolutionary Reinforcement Learning by Multitasking with Importance
Sampling [20.9680985132322]
本稿では,新しいニューロ進化的マルチタスク(NuEMT)アルゴリズムを導入し,一連の補助タスクからターゲット(フル長)RLタスクへ情報を伝達する。
我々は、NuEMTアルゴリズムがデータ-リーン進化RLであり、高価なエージェント-環境相互作用データ要求を減らすことを実証する。
論文 参考訳(メタデータ) (2022-03-21T10:06:16Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
協調学習技術のパラダイムとしてのフェデレートラーニング(FL)は研究の注目を集めている。
無線システム上での高速応答および高精度FLスキームの検証が重要である。
提案する通信効率のよいフェデレーション学習フレームワークは,強い線形速度で収束することを示す。
論文 参考訳(メタデータ) (2021-10-22T13:25:57Z) - Adaptive Scheduling for Machine Learning Tasks over Networks [1.4271989597349055]
本論文では, 線形回帰タスクに資源を効率的に割り当てるアルゴリズムを, データのインフォマティビティ性を利用して検討する。
アルゴリズムは、信頼性の高い性能保証による学習タスクの適応スケジューリングを可能にする。
論文 参考訳(メタデータ) (2021-01-25T10:59:00Z) - Toward Multiple Federated Learning Services Resource Sharing in Mobile
Edge Networks [88.15736037284408]
本稿では,マルチアクセスエッジコンピューティングサーバにおいて,複数のフェデレーション付き学習サービスの新たなモデルについて検討する。
共同資源最適化とハイパーラーニング率制御の問題,すなわちMS-FEDLを提案する。
シミュレーションの結果,提案アルゴリズムの収束性能を実証した。
論文 参考訳(メタデータ) (2020-11-25T01:29:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。