Hardware Aware Ensemble Selection for Balancing Predictive Accuracy and Cost
- URL: http://arxiv.org/abs/2408.02280v1
- Date: Mon, 5 Aug 2024 07:30:18 GMT
- Title: Hardware Aware Ensemble Selection for Balancing Predictive Accuracy and Cost
- Authors: Jannis Maier, Felix Möller, Lennart Purucker,
- Abstract summary: We introduce a hardware-aware ensemble selection approach that integrates inference time into post hoc ensembling.
By leveraging an existing framework for ensemble selection with quality diversity optimization, our method evaluates ensemble candidates for their predictive accuracy and hardware efficiency.
Our evaluation using 83 classification datasets shows that our approach sustains competitive accuracy and can significantly improve ensembles' operational efficiency.
- Score: 0.6486052012623046
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automated Machine Learning (AutoML) significantly simplifies the deployment of machine learning models by automating tasks from data preprocessing to model selection to ensembling. AutoML systems for tabular data often employ post hoc ensembling, where multiple models are combined to improve predictive accuracy. This typically results in longer inference times, a major limitation in practical deployments. Addressing this, we introduce a hardware-aware ensemble selection approach that integrates inference time into post hoc ensembling. By leveraging an existing framework for ensemble selection with quality diversity optimization, our method evaluates ensemble candidates for their predictive accuracy and hardware efficiency. This dual focus allows for a balanced consideration of accuracy and operational efficiency. Thus, our approach enables practitioners to choose from a Pareto front of accurate and efficient ensembles. Our evaluation using 83 classification datasets shows that our approach sustains competitive accuracy and can significantly improve ensembles' operational efficiency. The results of this study provide a foundation for extending these principles to additional hardware constraints, setting the stage for the development of more resource-efficient AutoML systems.
Related papers
- Unlearning as multi-task optimization: A normalized gradient difference approach with an adaptive learning rate [105.86576388991713]
We introduce a normalized gradient difference (NGDiff) algorithm, enabling us to have better control over the trade-off between the objectives.
We provide a theoretical analysis and empirically demonstrate the superior performance of NGDiff among state-of-the-art unlearning methods on the TOFU and MUSE datasets.
arXiv Detail & Related papers (2024-10-29T14:41:44Z) - Hit the Sweet Spot! Span-Level Ensemble for Large Language Models [8.34562564266839]
We propose SweetSpan, a span-level ensemble method that effectively balances the need for real-time adjustments and the information required for accurate ensemble decisions.
Our approach involves two key steps: First, we have each candidate model independently generate candidate spans based on the shared prefix.
Second, we calculate perplexity scores to facilitate mutual evaluation among the candidate models and achieve robust span selection by filtering out unfaithful scores.
arXiv Detail & Related papers (2024-09-27T09:41:29Z) - LoRA-Ensemble: Efficient Uncertainty Modelling for Self-attention Networks [52.46420522934253]
We introduce LoRA-Ensemble, a parameter-efficient deep ensemble method for self-attention networks.
By employing a single pre-trained self-attention network with weights shared across all members, we train member-specific low-rank matrices for the attention projections.
Our method exhibits superior calibration compared to explicit ensembles and achieves similar or better accuracy across various prediction tasks and datasets.
arXiv Detail & Related papers (2024-05-23T11:10:32Z) - Learning Fair Ranking Policies via Differentiable Optimization of
Ordered Weighted Averages [55.04219793298687]
This paper shows how efficiently-solvable fair ranking models can be integrated into the training loop of Learning to Rank.
In particular, this paper is the first to show how to backpropagate through constrained optimizations of OWA objectives, enabling their use in integrated prediction and decision models.
arXiv Detail & Related papers (2024-02-07T20:53:53Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Hybrid Algorithm Selection and Hyperparameter Tuning on Distributed
Machine Learning Resources: A Hierarchical Agent-based Approach [0.0]
This paper proposes a fully automatic and collaborative agent-based mechanism for selecting distributedly organized machine learning algorithms.
Our solution is totally correct and exhibits linear time and space complexity in relation to the size of available resources.
arXiv Detail & Related papers (2023-09-12T21:07:23Z) - AutoCure: Automated Tabular Data Curation Technique for ML Pipelines [0.0]
We present AutoCure, a novel and configuration-free data curation pipeline.
Unlike traditional data curation methods, AutoCure synthetically enhances the density of the clean data fraction.
In practice, AutoCure can be integrated with open source tools to promote the democratization of machine learning.
arXiv Detail & Related papers (2023-04-26T15:51:47Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Consolidated learning -- a domain-specific model-free optimization
strategy with examples for XGBoost and MIMIC-IV [4.370097023410272]
This paper proposes a new formulation of the tuning problem, called consolidated learning.
In such settings, we are interested in the total optimization time rather than tuning for a single task.
We demonstrate the effectiveness of this approach through an empirical study for XGBoost algorithm and the collection of predictive tasks extracted from the MIMIC-IV medical database.
arXiv Detail & Related papers (2022-01-27T21:38:53Z) - An automatic differentiation system for the age of differential privacy [65.35244647521989]
Tritium is an automatic differentiation-based sensitivity analysis framework for differentially private (DP) machine learning (ML)
We introduce Tritium, an automatic differentiation-based sensitivity analysis framework for differentially private (DP) machine learning (ML)
arXiv Detail & Related papers (2021-09-22T08:07:42Z) - ARDA: Automatic Relational Data Augmentation for Machine Learning [23.570173866941612]
We present system, an end-to-end system that takes as input a dataset and a data repository, and outputs an augmented data set.
Our system has two distinct components: (1) a framework to search and join data with the input data, based on various attributes of the input, and (2) an efficient feature selection algorithm that prunes out noisy or irrelevant features from the resulting join.
arXiv Detail & Related papers (2020-03-21T21:55:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.