論文の概要: Backward Compatibility in Attributive Explanation and Enhanced Model Training Method
- arxiv url: http://arxiv.org/abs/2408.02298v1
- Date: Mon, 5 Aug 2024 08:14:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 14:16:18.608042
- Title: Backward Compatibility in Attributive Explanation and Enhanced Model Training Method
- Title(参考訳): 帰属的説明と強化モデル学習法における後方互換性
- Authors: Ryuta Matsuno,
- Abstract要約: 本稿では,事前および更新後のモデル間の特徴属性説明の後方互換性を評価する指標であるBCXを紹介する。
BCXは、事前および更新後のモデルの説明の間の平均合意を計算するために、実践的な合意メトリクスを利用する。
モデルの説明の中でL2距離を利用して,すべての合意基準を改善するBCXRの普遍的変種を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Model update is a crucial process in the operation of ML/AI systems. While updating a model generally enhances the average prediction performance, it also significantly impacts the explanations of predictions. In real-world applications, even minor changes in explanations can have detrimental consequences. To tackle this issue, this paper introduces BCX, a quantitative metric that evaluates the backward compatibility of feature attribution explanations between pre- and post-update models. BCX utilizes practical agreement metrics to calculate the average agreement between the explanations of pre- and post-update models, specifically among samples on which both models accurately predict. In addition, we propose BCXR, a BCX-aware model training method by designing surrogate losses which theoretically lower bounds agreement scores. Furthermore, we present a universal variant of BCXR that improves all agreement metrics, utilizing L2 distance among the explanations of the models. To validate our approach, we conducted experiments on eight real-world datasets, demonstrating that BCXR achieves superior trade-offs between predictive performances and BCX scores, showcasing the effectiveness of our BCXR methods.
- Abstract(参考訳): モデル更新はML/AIシステムの運用において重要なプロセスである。
モデルのアップデートは概して平均予測性能を高めるが、予測の説明にも大きな影響を与える。
現実世界のアプリケーションでは、説明の微妙な変更でさえ有害な結果をもたらす可能性がある。
この問題に対処するために,本論文では,事前および更新後のモデル間の特徴属性説明の後方互換性を評価する定量的な指標であるBCXを紹介する。
BCXは、実際の合意基準を利用して、事前モデルと更新後のモデルの説明の間の平均合意を計算する。
さらに,BCXを意識したモデルトレーニング手法であるBCXRを提案する。
さらに、モデルの説明の中でL2距離を利用して、すべての合意基準を改善するBCXRの普遍的な変種を示す。
提案手法の有効性を実証するため,BCXRが予測性能とBCXスコアの良好なトレードオフを達成できることを実証し,BCXR手法の有効性を示した。
関連論文リスト
- On conditional diffusion models for PDE simulations [53.01911265639582]
スパース観測の予測と同化のためのスコアベース拡散モデルについて検討した。
本稿では,予測性能を大幅に向上させる自動回帰サンプリング手法を提案する。
また,条件付きスコアベースモデルに対する新たなトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2024-10-21T18:31:04Z) - Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
拡散モデルは、生成的モデリングに大きな進歩をもたらした。
しかし、彼らの普及はデータ属性と解釈可能性に関する課題を引き起こす。
本稿では,テキスト・インフルエンス・ファンクション・フレームワークを開発することにより,このような課題に対処することを目的とする。
論文 参考訳(メタデータ) (2024-10-17T17:59:02Z) - Prithvi WxC: Foundation Model for Weather and Climate [2.9230020115516253]
Prithvi WxCは、Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2)から160変数を用いて開発された23億のパラメータ基盤モデルである。
このモデルは、異なる位相の気象現象を微細な解像度でモデル化するために、大きなトークン数に対応できるように設計されている。
本稿では, 自動回帰ロールアウト予測, ダウンスケーリング, 重力波フラックスパラメータ化, エクストリームイベント推定など, 課題のある下流タスクのセットでモデルを検証する。
論文 参考訳(メタデータ) (2024-09-20T15:53:17Z) - Multi-Step Embed to Control: A Novel Deep Learning-based Approach for Surrogate Modelling in Reservoir Simulation [0.0]
縮小次数モデル(英: Reduced-order model)またはプロキシモデル(英: proxy model)またはサロゲートモデル(英: surrogate model)は、完全な記述モデルとは対照的に計算コストの低い近似モデルである。
本稿では,長期予測性能を向上したプロキシモデル構築のための,多段階組込み制御モデルと呼ばれる深層学習に基づく代理モデルを提案する。
論文 参考訳(メタデータ) (2024-09-16T01:35:34Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
近似機械学習モデルの集合に対する競合予測の効果について検討する。
ラーショモン集合内のモデル間の係り受けに関する理論的結果を示す。
当社のアプローチは、コンシューマ向けアプリケーションにおいて、より予測し、削減し、混乱を避けるためにどのように使用できるかを示します。
論文 参考訳(メタデータ) (2024-02-12T16:15:25Z) - From Reactive to Proactive Volatility Modeling with Hemisphere Neural Networks [0.0]
我々は,新しいニューラルネットワークアーキテクチャを用いて,マクロ経済密度予測のための最大推定値(MLE)を再活性化する。
ヘミスフィアニューラルネットワーク(HNN)は、可能時の主指標に基づく積極的なボラティリティ予測と、必要時の過去の予測誤差の大きさに基づく反応性ボラティリティ予測を提供する。
論文 参考訳(メタデータ) (2023-11-27T21:37:50Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
補間系の性能に影響を及ぼす要因を特徴付ける一般モデルのクラスに対して,PAC-Bayes境界がいかに得られるかを示す。
オーバーパラメータ化モデルに対するテスト誤差が、モデルとパラメータの初期化スキームの組み合わせによって課される暗黙の正規化の品質に依存するかの定量化を行う。
論文 参考訳(メタデータ) (2023-11-13T01:48:08Z) - Calibration of Time-Series Forecasting: Detecting and Adapting Context-Driven Distribution Shift [28.73747033245012]
本稿では,コンテキスト駆動分布シフトの検出と適応のための普遍的キャリブレーション手法を提案する。
レジデンシャルベースCDS検出器(Residual-based CDS detector)またはリコンディショナー(Reconditionor)と呼ばれる新しいCDS検出器は、モデルの脆弱性をCDSに定量化する。
高いリコンディショナースコアは、重度の感受性を示し、したがってモデル適応を必要とする。
論文 参考訳(メタデータ) (2023-10-23T11:58:01Z) - Guide the Learner: Controlling Product of Experts Debiasing Method Based
on Token Attribution Similarities [17.082695183953486]
一般的な回避策は、二次バイアスモデルに基づいてトレーニング例を再重み付けすることで、堅牢なモデルをトレーニングすることである。
ここでは、バイアスドモデルが機能をショートカットする、という前提がある。
本稿では,主要モデルと偏りのあるモデル属性スコアの類似性を,プロダクト・オブ・エキスパートズ・ロス関数に組み込んだ微調整戦略を提案する。
論文 参考訳(メタデータ) (2023-02-06T15:21:41Z) - How robust are pre-trained models to distribution shift? [82.08946007821184]
自己教師付き学習(SSL)と自己エンコーダベースモデル(AE)の相互関係が相互関係に与える影響を示す。
本研究では, 線形ヘッドの潜在バイアスから事前学習したモデルの性能を分離するために, アウト・オブ・ディストリビューション(OOD)データに基づいて訓練された線形ヘッドを用いた新しい評価手法を開発した。
論文 参考訳(メタデータ) (2022-06-17T16:18:28Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
公衆衛生におけるリアルタイム予測では、データ収集は簡単で要求の多いタスクである。
過去の文献では「バックフィル」現象とそのモデル性能への影響についてはほとんど研究されていない。
我々は、与えられたモデルの予測をリアルタイムで洗練することを目的とした、新しい問題とニューラルネットワークフレームワークBack2Futureを定式化する。
論文 参考訳(メタデータ) (2021-06-08T14:48:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。