論文の概要: RECE: Reduced Cross-Entropy Loss for Large-Catalogue Sequential Recommenders
- arxiv url: http://arxiv.org/abs/2408.02354v3
- Date: Wed, 14 Aug 2024 15:19:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-15 15:18:29.553473
- Title: RECE: Reduced Cross-Entropy Loss for Large-Catalogue Sequential Recommenders
- Title(参考訳): RECE: 大規模シーケンスレコメンダにおけるクロスエントロピー損失の低減
- Authors: Danil Gusak, Gleb Mezentsev, Ivan Oseledets, Evgeny Frolov,
- Abstract要約: 本稿では,RECE(Reduced Cross-Entropy)の損失について紹介する。
RECEは、完全なCE損失の最先端性能を享受しながら、メモリ消費を大幅に削減する。
各種データセットによる実験結果から,RECEは既存の手法に比べて最大12倍のトレーニングピークメモリ使用量を削減できることがわかった。
- 参考スコア(独自算出の注目度): 4.165917157093442
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Scalability is a major challenge in modern recommender systems. In sequential recommendations, full Cross-Entropy (CE) loss achieves state-of-the-art recommendation quality but consumes excessive GPU memory with large item catalogs, limiting its practicality. Using a GPU-efficient locality-sensitive hashing-like algorithm for approximating large tensor of logits, this paper introduces a novel RECE (REduced Cross-Entropy) loss. RECE significantly reduces memory consumption while allowing one to enjoy the state-of-the-art performance of full CE loss. Experimental results on various datasets show that RECE cuts training peak memory usage by up to 12 times compared to existing methods while retaining or exceeding performance metrics of CE loss. The approach also opens up new possibilities for large-scale applications in other domains.
- Abstract(参考訳): スケーラビリティは現代のレコメンデータシステムにおいて大きな課題です。
シーケンシャルなレコメンデーションでは、完全なクロスエントロピー(CE)損失は最先端のレコメンデーション品質を達成するが、大量のアイテムカタログを持つ過剰なGPUメモリを消費し、実用性を制限する。
本稿では,GPUの局所性に敏感なハッシュ型アルゴリズムを用いて,新たなRECE(Reduced Cross-Entropy)ロスを提案する。
RECEは、完全なCE損失の最先端性能を享受しながら、メモリ消費を大幅に削減する。
さまざまなデータセットの実験結果から、RECEはCE損失のパフォーマンス指標を維持したり、超えたりしながら、既存の手法に比べて最大12倍のピークメモリ使用率のトレーニングを削減している。
このアプローチは、他のドメインにおける大規模アプリケーションに対する新たな可能性を開く。
関連論文リスト
- Cut Your Losses in Large-Vocabulary Language Models [102.6981011879656]
我々は,全トークンのロジットをグローバルメモリに実体化することなく,クロスエントロピー損失を計算する手法であるカットクロスエントロピー(CCE)を提案する。
CCEはロスのメモリフットプリントを24GBから1MBに減らし、ヘッドのトレーニング時間のメモリ消費を28GBから1GBに短縮する。
論文 参考訳(メタデータ) (2024-11-13T20:30:15Z) - Scalable Cross-Entropy Loss for Sequential Recommendations with Large Item Catalogs [4.165917157093442]
本稿では,シーケンシャルラーニング・セットアップにおいて,新しいスケーラブルクロスエントロピー(SCE)損失関数を提案する。
大規模なカタログを持つデータセットのCE損失を近似し、推奨品質を損なうことなく、時間効率とメモリ使用量の両方を向上する。
複数のデータセットに対する実験結果から,SCEのピークメモリ使用率を最大100倍に抑える効果が示された。
論文 参考訳(メタデータ) (2024-09-27T13:17:59Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
大規模言語モデル(LLM)は自然言語処理の分野に革命をもたらし、様々なアプリケーションで前例のない性能を達成した。
本稿では,KVキャッシュのメモリ消費の非効率性に対処する長文シナリオに焦点を当てた。
我々は,最小のチャネルを選択的に切断しながら,注目重量損失を最小限に抑える新しいクエリ依存型KVキャッシュプルーニング手法であるThinKを提案する。
論文 参考訳(メタデータ) (2024-07-30T17:59:08Z) - A Thorough Performance Benchmarking on Lightweight Embedding-based Recommender Systems [67.52782366565658]
State-of-the-art recommender system (RS) は、埋め込みベクトルによって符号化される分類的特徴に依存し、結果として非常に大きな埋め込みテーブルとなる。
軽量埋め込み型RSの繁栄にもかかわらず、評価プロトコルには幅広い多様性が見られる。
本研究では, LERSの性能, 効率, クロスタスク転送性について, 徹底的なベンチマークによる検討を行った。
論文 参考訳(メタデータ) (2024-06-25T07:45:00Z) - EcoTTA: Memory-Efficient Continual Test-time Adaptation via
Self-distilled Regularization [71.70414291057332]
TTAは主にメモリ制限のあるエッジデバイス上で実行される。
長期的な適応は、しばしば破滅的な忘れとエラーの蓄積につながる。
本稿では,凍結したオリジナルネットワークを対象ドメインに適応させる軽量なメタネットワークを提案する。
論文 参考訳(メタデータ) (2023-03-03T13:05:30Z) - CATRO: Channel Pruning via Class-Aware Trace Ratio Optimization [61.71504948770445]
本稿では,CATRO (Class-Aware Trace Ratio Optimization) を用いた新しいチャネルプルーニング手法を提案する。
CATROは、他の最先端チャネルプルーニングアルゴリズムと同等の精度で、同様のコストまたは低コストで高い精度を達成できることを示す。
CATROは、クラス認識の特性のため、様々な分類サブタスクに適応的に効率の良いネットワークを創り出すのに適している。
論文 参考訳(メタデータ) (2021-10-21T06:26:31Z) - Hierarchical and Efficient Learning for Person Re-Identification [19.172946887940874]
階層的大域的, 部分的, 回復的特徴を複数の損失結合の監督の下で学習する, 階層的, 効率的なネットワーク(HENet)を提案する。
また,RPE (Random Polygon Erasing) と呼ばれる新しいデータセット拡張手法を提案する。
論文 参考訳(メタデータ) (2020-05-18T15:45:25Z) - A Generic Network Compression Framework for Sequential Recommender
Systems [71.81962915192022]
シークエンシャルレコメンデーションシステム(SRS)は,ユーザの動的関心を捉え,高品質なレコメンデーションを生成する上で重要な技術となっている。
CpRecと呼ばれる圧縮されたシーケンシャルレコメンデーションフレームワークを提案する。
大規模なアブレーション研究により、提案したCpRecは実世界のSRSデータセットにおいて最大4$sim$8倍の圧縮速度を達成できることを示した。
論文 参考訳(メタデータ) (2020-04-21T08:40:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。