論文の概要: Multi-weather Cross-view Geo-localization Using Denoising Diffusion Models
- arxiv url: http://arxiv.org/abs/2408.02408v2
- Date: Wed, 28 Aug 2024 02:53:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-29 20:18:52.334666
- Title: Multi-weather Cross-view Geo-localization Using Denoising Diffusion Models
- Title(参考訳): Denoising Diffusion Modelを用いたマルチウェザークロスビュージオローカライゼーション
- Authors: Tongtong Feng, Qing Li, Xin Wang, Mingzi Wang, Guangyao Li, Wenwu Zhu,
- Abstract要約: クロスビュージオローカライゼーションは、ドローンビュー画像と、大きなギャラリーからの正確なジオタグ付き衛星ビュー画像とをマッチングすることにより、未知の場所を決定することを目的としている。
近年の研究では、特定の気象条件下での識別的画像表現の学習が、性能を著しく向上させることが示されている。
本稿では,気象条件に適応する多天候クロスビュージオローカライゼーションフレームワークであるMCGFを紹介する。
- 参考スコア(独自算出の注目度): 35.905368662233954
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cross-view geo-localization in GNSS-denied environments aims to determine an unknown location by matching drone-view images with the correct geo-tagged satellite-view images from a large gallery. Recent research shows that learning discriminative image representations under specific weather conditions can significantly enhance performance. However, the frequent occurrence of unseen extreme weather conditions hinders progress. This paper introduces MCGF, a Multi-weather Cross-view Geo-localization Framework designed to dynamically adapt to unseen weather conditions. MCGF establishes a joint optimization between image restoration and geo-localization using denoising diffusion models. For image restoration, MCGF incorporates a shared encoder and a lightweight restoration module to help the backbone eliminate weather-specific information. For geo-localization, MCGF uses EVA-02 as a backbone for feature extraction, with cross-entropy loss for training and cosine distance for testing. Extensive experiments on University160k-WX demonstrate that MCGF achieves competitive results for geo-localization in varying weather conditions.
- Abstract(参考訳): GNSSデニッド環境におけるクロスビューのジオローカライゼーションは、ドローンビュー画像と、大きなギャラリーからの正確なジオタグ付き衛星ビュー画像とをマッチングすることにより、未知の場所を決定することを目的としている。
近年の研究では、特定の気象条件下での識別的画像表現の学習が、性能を大幅に向上させることが示されている。
しかし、目に見えない極度の天候が頻繁に起こると、進行が妨げられる。
本稿では,気象条件に適応する多天候クロスビュージオローカライゼーションフレームワークであるMCGFを紹介する。
MCGFはデノナイジング拡散モデルを用いて画像復元とジオローカライゼーションを共同で最適化する。
画像復元のため、MCGFは共有エンコーダと軽量復元モジュールを内蔵し、バックボーンが気象情報を排除するのに役立つ。
ジオローカライゼーションでは、MCGFはEVA-02を特徴抽出のバックボーンとして使用し、トレーニングにはクロスエントロピーロス、テストにはコサイン距離が使用される。
大学160k-WXにおける大規模な実験により、MCGFは様々な気象条件下での局地化の競争的な結果が得られることが示された。
関連論文リスト
- Style Alignment based Dynamic Observation Method for UAV-View Geo-localization [7.185123213523453]
UAVビューのジオローカライゼーションのためのスタイルアライメントに基づく動的観察法を提案する。
具体的には、ドローンビュー画像の多様な視覚スタイルから衛星画像の統一的な視覚スタイルへ変換するスタイルアライメント戦略を導入する。
動的観察モジュールは、人間の観察習慣を模倣して画像の空間分布を評価するように設計されている。
論文 参考訳(メタデータ) (2024-07-03T06:19:42Z) - STHN: Deep Homography Estimation for UAV Thermal Geo-localization with Satellite Imagery [14.651828898850892]
粗大から細い深部ホログラフィー推定手法を用いたUAV熱ジオローカライズ手法を提案する。
この方法は、UAVの最後の位置から半径512メートル以内で、信頼性の高い熱的位置決めを可能にする。
論文 参考訳(メタデータ) (2024-05-30T20:41:12Z) - GeoCLIP: Clip-Inspired Alignment between Locations and Images for
Effective Worldwide Geo-localization [61.10806364001535]
世界規模のジオローカライゼーションは、地球上のどこでも撮影された画像の正確な位置を特定することを目的としている。
既存のアプローチは、地球を離散的な地理的細胞に分割し、問題を分類タスクに変換する。
画像と対応するGPS位置のアライメントを強制する新しいCLIPにインスパイアされた画像-GPS検索手法であるGeoCLIPを提案する。
論文 参考訳(メタデータ) (2023-09-27T20:54:56Z) - Cross-View Visual Geo-Localization for Outdoor Augmented Reality [11.214903134756888]
地上画像のクロスビューマッチングによる測地位置推定の課題をジオレファレンス衛星画像データベースに解決する。
本稿では,新しいトランスフォーマーニューラルネットワークモデルを提案する。
いくつかのベンチマーク・クロスビュー・ジオローカライズ・データセットの実験により、我々のモデルが最先端の性能を達成することを示す。
論文 参考訳(メタデータ) (2023-03-28T01:58:03Z) - Cross-view Geo-localization via Learning Disentangled Geometric Layout
Correspondence [11.823147814005411]
クロスビュージオローカライゼーションは、参照ジオタグ付き空中画像データベースとマッチングすることで、クエリーグラウンド画像の位置を推定することを目的としている。
最近の研究は、クロスビューなジオローカライゼーションベンチマークにおいて顕著な進歩を遂げている。
しかし、既存の手法は依然としてクロスエリアベンチマークのパフォーマンスの低下に悩まされている。
論文 参考訳(メタデータ) (2022-12-08T04:54:01Z) - Cross-View Image Sequence Geo-localization [6.555961698070275]
クロスビュージオローカライゼーションは,クエリ基底画像のGPS位置を推定することを目的としている。
最近のアプローチでは、パノラマ画像を用いて視界範囲を拡大している。
本研究では、フィールド-オフ-ビューの限られた画像のシーケンスで動作する、最初のクロスビューなジオローカライズ手法を提案する。
論文 参考訳(メタデータ) (2022-10-25T19:46:18Z) - Multiple-environment Self-adaptive Network for Aerial-view
Geo-localization [85.52750931345287]
航空ビューのジオローカライゼーションは、ドローンビュー画像とジオタグの衛星ビュー画像とをマッチングすることにより、未知の位置を決定する傾向がある。
本研究では,環境変化に伴う領域シフトを調整するために,マルチ環境自己適応ネットワーク(MuSe-Net)を提案する。
特に、MuSe-Netは、1つの多重環境スタイル抽出ネットワークと1つの自己適応的特徴抽出ネットワークを含む2分岐ニューラルネットワークを使用している。
論文 参考訳(メタデータ) (2022-04-18T16:04:29Z) - Accurate 3-DoF Camera Geo-Localization via Ground-to-Satellite Image
Matching [102.39635336450262]
地上で取得したクエリ画像とジオタグ付き衛星画像の大規模データベースとをマッチングすることにより、地上から衛星画像のジオローカライズの問題に対処する。
我々の新しい手法は、衛星画像のピクセルサイズの精度まで、クエリー画像のきめ細かい位置を達成できる。
論文 参考訳(メタデータ) (2022-03-26T20:10:38Z) - Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning [88.60285937702304]
本稿では,複数のランダムアンカーグラフアンサンブル学習(RAGE)を用いた空間スペクトルHSI分類手法を提案する。
まず、各選択されたバンドのより記述的な特徴を抽出し、局所的な構造と領域の微妙な変化を保存するローカルバイナリパターンを採用する。
次に,アンカーグラフの構成に適応隣接代入を導入し,計算複雑性を低減した。
論文 参考訳(メタデータ) (2021-03-25T09:31:41Z) - Image Fine-grained Inpainting [89.17316318927621]
拡張畳み込みの密結合を利用してより大きく効果的な受容場を得る一段階モデルを提案する。
この効率的なジェネレータをよく訓練するために、頻繁に使用されるVGG特徴整合損失を除いて、新しい自己誘導回帰損失を設計する。
また、局所的・グローバルな分枝を持つ識別器を用いて、局所的・グローバルな内容の整合性を確保する。
論文 参考訳(メタデータ) (2020-02-07T03:45:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。