論文の概要: The Role of Functional Muscle Networks in Improving Hand Gesture Perception for Human-Machine Interfaces
- arxiv url: http://arxiv.org/abs/2408.02547v1
- Date: Mon, 5 Aug 2024 15:17:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 13:17:11.975074
- Title: The Role of Functional Muscle Networks in Improving Hand Gesture Perception for Human-Machine Interfaces
- Title(参考訳): ヒューマン・マシン・インタフェースにおける手のジェスチャー知覚改善における機能筋ネットワークの役割
- Authors: Costanza Armanini, Tuka Alhanai, Farah E. Shamout, S. Farokh Atashzar,
- Abstract要約: 表面筋電図(sEMG)はその豊富な情報コンテキストとアクセシビリティのために研究されている。
本稿では,個々の筋活性化ではなく,筋同期の復号化を提案する。
85.1%の精度を実現し、既存の手法に比べて性能が向上した。
- 参考スコア(独自算出の注目度): 2.367412330421982
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Developing accurate hand gesture perception models is critical for various robotic applications, enabling effective communication between humans and machines and directly impacting neurorobotics and interactive robots. Recently, surface electromyography (sEMG) has been explored for its rich informational context and accessibility when combined with advanced machine learning approaches and wearable systems. The literature presents numerous approaches to boost performance while ensuring robustness for neurorobots using sEMG, often resulting in models requiring high processing power, large datasets, and less scalable solutions. This paper addresses this challenge by proposing the decoding of muscle synchronization rather than individual muscle activation. We study coherence-based functional muscle networks as the core of our perception model, proposing that functional synchronization between muscles and the graph-based network of muscle connectivity encode contextual information about intended hand gestures. This can be decoded using shallow machine learning approaches without the need for deep temporal networks. Our technique could impact myoelectric control of neurorobots by reducing computational burdens and enhancing efficiency. The approach is benchmarked on the Ninapro database, which contains 12 EMG signals from 40 subjects performing 17 hand gestures. It achieves an accuracy of 85.1%, demonstrating improved performance compared to existing methods while requiring much less computational power. The results support the hypothesis that a coherence-based functional muscle network encodes critical information related to gesture execution, significantly enhancing hand gesture perception with potential applications for neurorobotic systems and interactive machines.
- Abstract(参考訳): 正確な手の動き知覚モデルを開発することは、人間と機械間の効果的なコミュニケーションを可能にし、神経ロボティクスや対話型ロボットに直接影響を与える様々なロボットアプリケーションにとって重要である。
近年、表面筋電図(SEMG)は、高度な機械学習アプローチやウェアラブルシステムと組み合わせることで、豊富な情報コンテキストとアクセシビリティのために研究されている。
この文献は、sEMGを使用して神経ロボットの堅牢性を確保しつつ、パフォーマンスを向上させるための多くのアプローチを示し、しばしば、高い処理能力、大規模なデータセット、よりスケーラブルなソリューションを必要とするモデルをもたらす。
本稿では,個々の筋の活性化ではなく,筋の同期の復号化を提案することで,この問題に対処する。
我々は,コヒーレンスに基づく機能的筋ネットワークを知覚モデルの中核として研究し,筋とグラフに基づく筋接続ネットワーク間の機能的同期が,意図した手の動きに関するコンテキスト情報を符号化することを示した。
これは、ディープ・テンポラル・ネットワークを必要とせずに、浅い機械学習アプローチでデコードできる。
我々の技術は、計算負担を減らし、効率を高めることにより、神経ロボットの筋電制御に影響を及ぼす可能性がある。
このアプローチは、Ninaproデータベース上でベンチマークされ、40人の被験者から17のハンドジェスチャを実行する12のEMG信号が含まれている。
85.1%の精度を実現し、計算能力を大幅に低下させながら、既存の手法に比べて性能が向上した。
その結果、コヒーレンスに基づく機能筋ネットワークは、ジェスチャー実行に関連する重要な情報を符号化し、神経ロボティクスシステムやインタラクティブマシンへの潜在的な応用により手の動き知覚を著しく向上させるという仮説を支持した。
関連論文リスト
- Human-Agent Joint Learning for Efficient Robot Manipulation Skill Acquisition [48.65867987106428]
本稿では,人間とロボットの協調学習システムについて紹介する。
これにより、ロボットエンドエフェクターの制御を学習支援エージェントと共有することができる。
これにより、ダウンストリームタスクにおいて、収集されたデータが十分な品質であることを保証しながら、人間の適応の必要性を減らすことができる。
論文 参考訳(メタデータ) (2024-06-29T03:37:29Z) - Single Neuromorphic Memristor closely Emulates Multiple Synaptic
Mechanisms for Energy Efficient Neural Networks [71.79257685917058]
我々はこれらのシナプス機能を本質的にエミュレートするSrTiO3に基づく膜状ナノデバイスを実証する。
これらのメムリスタは、安定かつエネルギー効率の良い運転を可能にする非定常低導電系で機能する。
論文 参考訳(メタデータ) (2024-02-26T15:01:54Z) - Astrocyte Regulated Neuromorphic Central Pattern Generator Control of
Legged Robotic Locomotion [3.7814142008074954]
本稿では,四足歩行ロボットの移動歩行を学習するためのアストロサイト制御スパイキングニューラルネットワーク(SNN)を用いた CPG を提案する。
SNNベースのCPGは、多目的物理シミュレーションプラットフォーム上でシミュレーションされ、平地でロボットを走らせながらトロッティング歩行が出現する。
最先端の強化学習に基づくロボット制御アルゴリズムと比較して、23.3Times$計算パワーセーブが観測される。
論文 参考訳(メタデータ) (2023-12-25T20:33:16Z) - DiffuseBot: Breeding Soft Robots With Physics-Augmented Generative
Diffusion Models [102.13968267347553]
本稿では,様々なタスクにおいて優れたソフトロボット形態を生成する物理拡張拡散モデルであるDiffuseBotを提案する。
我々は、その能力とともに、シミュレーションされた、そして製造された様々なロボットを紹介します。
論文 参考訳(メタデータ) (2023-11-28T18:58:48Z) - Learning-based adaption of robotic friction models [48.453527255659296]
我々は、可能な限り少ないデータを用いて、既存の摩擦モデルを新しいダイナミクスに適用するための新しいアプローチを導入する。
提案する推定器は,従来のモデルベースアプローチとベースニューラルネットワークを著しく上回る性能を示した。
本手法はトレーニング中に外部負荷を伴うデータに依存しないため,外部トルクセンサは不要である。
論文 参考訳(メタデータ) (2023-10-25T14:50:15Z) - Evaluating Spiking Neural Network On Neuromorphic Platform For Human
Activity Recognition [2.710807780228189]
エネルギー効率と低レイテンシは、ウェアラブルAIを活用した人間の活動認識システムにとって重要な要件である。
スパイクベースのワークアウト認識システムは、従来のニューラルネットワークを備えた一般的なミリワットRISC-VベースマルチコアプロセッサGAP8に匹敵する精度を達成することができる。
論文 参考訳(メタデータ) (2023-08-01T18:59:06Z) - A Convolutional Spiking Network for Gesture Recognition in
Brain-Computer Interfaces [0.8122270502556371]
脳信号に基づく手振り分類の例題問題に対して,簡単な機械学習に基づくアプローチを提案する。
本手法は脳波データとECoGデータの両方で異なる対象に一般化し,92.74-97.07%の範囲で精度が向上することを示した。
論文 参考訳(メタデータ) (2023-04-21T16:23:40Z) - Domain Adaptive Robotic Gesture Recognition with Unsupervised
Kinematic-Visual Data Alignment [60.31418655784291]
本稿では,マルチモダリティ知識,すなわちキネマティックデータとビジュアルデータを同時にシミュレータから実ロボットに伝達できる,教師なしドメイン適応フレームワークを提案する。
ビデオの時間的手がかりと、ジェスチャー認識に対するマルチモーダル固有の相関を用いて、トランスファー可能な機能を強化したドメインギャップを修復する。
その結果, 本手法は, ACCでは最大12.91%, F1scoreでは20.16%と, 実際のロボットではアノテーションを使わずに性能を回復する。
論文 参考訳(メタデータ) (2021-03-06T09:10:03Z) - Synthesizing Skeletal Motion and Physiological Signals as a Function of
a Virtual Human's Actions and Emotions [10.59409233835301]
本研究では, 同期運動, 心電図, 血圧, 呼吸, 皮膚伝導信号の計算モデルからなるシステムを開発した。
提案されたフレームワークはモジュール化されており、柔軟性によってさまざまなモデルを試すことができる。
ラウンド・ザ・タイム・モニタリングのためのML研究を低コストで行うことに加えて、提案されたフレームワークはコードとデータの再利用を可能にする。
論文 参考訳(メタデータ) (2021-02-08T21:56:15Z) - Human Haptic Gesture Interpretation for Robotic Systems [3.888848425698769]
物理的人間とロボットの相互作用(pHRI)は、人間と人間の相互作用よりも効率的でコミュニケーションが難しい。
主な理由は、ロボットシステムにおける情報的な触覚の欠如である。
本研究は,文献で特定されるジェスチャーの特徴の大部分をカバーする4つのタッチジェスチャークラスを提案する。
論文 参考訳(メタデータ) (2020-12-03T14:33:57Z) - Relational Graph Learning on Visual and Kinematics Embeddings for
Accurate Gesture Recognition in Robotic Surgery [84.73764603474413]
本稿では,マルチモーダルグラフネットワーク(MRG-Net)の新たなオンラインアプローチを提案し,視覚情報とキネマティクス情報を動的に統合する。
本手法の有効性は, JIGSAWSデータセット上での最先端の成果で実証された。
論文 参考訳(メタデータ) (2020-11-03T11:00:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。