論文の概要: Physics-informed Deep Learning for Muscle Force Prediction with Unlabeled sEMG Signals
- arxiv url: http://arxiv.org/abs/2412.04213v1
- Date: Thu, 05 Dec 2024 14:47:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-06 14:38:59.937078
- Title: Physics-informed Deep Learning for Muscle Force Prediction with Unlabeled sEMG Signals
- Title(参考訳): 無ラベルsEMG信号を用いた筋力予測のための物理インフォームドディープラーニング
- Authors: Shuhao Ma, Jie Zhang, Chaoyang Shi, Pei Di, Ian D. Robertson, Zhi-Qiang Zhang,
- Abstract要約: 本稿では,モデルトレーニング中にラベル情報なしで筋力を予測する物理インフォームドディープラーニング手法を提案する。
また,提案手法は筋腱パラメータの同定にも有効である。
筋力の予測結果は,根平均二乗誤差(RMSE)と基準法に比べて高い判定係数を示した。
- 参考スコア(独自算出の注目度): 4.382876444149811
- License:
- Abstract: Computational biomechanical analysis plays a pivotal role in understanding and improving human movements and physical functions. Although physics-based modeling methods can interpret the dynamic interaction between the neural drive to muscle dynamics and joint kinematics, they suffer from high computational latency. In recent years, data-driven methods have emerged as a promising alternative due to their fast execution speed, but label information is still required during training, which is not easy to acquire in practice. To tackle these issues, this paper presents a novel physics-informed deep learning method to predict muscle forces without any label information during model training. In addition, the proposed method could also identify personalized muscle-tendon parameters. To achieve this, the Hill muscle model-based forward dynamics is embedded into the deep neural network as the additional loss to further regulate the behavior of the deep neural network. Experimental validations on the wrist joint from six healthy subjects are performed, and a fully connected neural network (FNN) is selected to implement the proposed method. The predicted results of muscle forces show comparable or even lower root mean square error (RMSE) and higher coefficient of determination compared with baseline methods, which have to use the labeled surface electromyography (sEMG) signals, and it can also identify muscle-tendon parameters accurately, demonstrating the effectiveness of the proposed physics-informed deep learning method.
- Abstract(参考訳): 計算バイオメカニクス解析は、人間の運動や身体機能を理解し改善する上で重要な役割を担っている。
物理に基づくモデリング手法は、神経駆動と筋肉力学と関節運動学の間の動的相互作用を解釈できるが、それらは高い計算遅延に悩まされる。
近年、高速な実行速度のためにデータ駆動方式が有望な代替手段として現れてきたが、実際に取得するのは容易ではないため、トレーニング中にラベル情報が必要である。
これらの課題に対処するために,モデルトレーニング中にラベル情報なしで筋力を予測する物理インフォームド・ディープ・ラーニング法を提案する。
また,提案手法は筋腱パラメータの同定にも有効である。
これを実現するために、ヒル筋モデルに基づくフォワードダイナミクスは、ディープニューラルネットワークの振る舞いをさらに規制する追加の損失として、ディープニューラルネットワークに埋め込まれる。
健常者6名の手首関節に対する実験的検証を行い,提案手法を実装するために完全連結ニューラルネットワーク(FNN)を選択した。
筋力の予測結果は,表層筋電図(sEMG)信号を用いるベースライン法と比較して,根平均二乗誤差(RMSE)と高い判定係数を示すとともに,筋腱パラメータを正確に同定し,提案した物理情報を用いた深層学習法の有効性を示す。
関連論文リスト
- Muscles in Time: Learning to Understand Human Motion by Simulating Muscle Activations [64.98299559470503]
マッスル・イン・タイム (MinT) は、大規模な人工筋肉活性化データセットである。
227名の被験者と402名の模擬筋骨格をカバーする9時間以上のシミュレーションデータを含んでいる。
ヒトのポーズ配列からニューラルネットワークを用いた筋活動量推定の結果を示す。
論文 参考訳(メタデータ) (2024-10-31T18:28:53Z) - The Role of Functional Muscle Networks in Improving Hand Gesture Perception for Human-Machine Interfaces [2.367412330421982]
表面筋電図(sEMG)はその豊富な情報コンテキストとアクセシビリティのために研究されている。
本稿では,個々の筋活性化ではなく,筋同期の復号化を提案する。
85.1%の精度を実現し、既存の手法に比べて性能が向上した。
論文 参考訳(メタデータ) (2024-08-05T15:17:34Z) - The bionic neural network for external simulation of human locomotor
system [2.6311880922890842]
本稿では,筋骨格モデルに基づく物理インフォームド深層学習法を提案し,関節運動と筋力を予測する。
この方法は、被験者固有のMSK生理学的パラメータを効果的に同定することができ、訓練された物理インフォームドフォワード力学は、正確な動きと筋力予測をもたらす。
論文 参考訳(メタデータ) (2023-09-11T23:02:56Z) - A Physics-Informed Low-Shot Learning For sEMG-Based Estimation of Muscle
Force and Joint Kinematics [4.878073267556235]
表面筋電図(sEMG)による筋力と関節キネマティクス推定はリアルタイム生体力学的解析に不可欠である。
ディープニューラルネットワーク(DNN)の最近の進歩は、完全に自動化され再現可能な方法で生体力学解析を改善する可能性を示している。
本稿では,筋力と関節キネマティクスのsEMGに基づく新しい物理インフォームドローショット学習法を提案する。
論文 参考訳(メタデータ) (2023-07-08T23:01:12Z) - A Multi-Resolution Physics-Informed Recurrent Neural Network:
Formulation and Application to Musculoskeletal Systems [1.978587235008588]
本研究は筋骨格運動(MSK)の同時予測のための物理インフォームド・リカレントニューラルネットワーク(MR PI-RNN)を提案する。
提案手法は、高速ウェーブレット変換を用いて、混合周波数入力sEMGを分解し、ジョイントモーション信号をネスト多重解像度信号に出力する。
このフレームワークはまた、被験者の運動学データと生理的に整合した筋肉パラメータを識別することも可能である。
論文 参考訳(メタデータ) (2023-05-26T02:51:39Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - DriPP: Driven Point Processes to Model Stimuli Induced Patterns in M/EEG
Signals [62.997667081978825]
我々はDriPPと呼ばれる新しい統計点過程モデルを開発する。
我々は、このモデルのパラメータを推定するために、高速で原理化された予測最大化(EM)アルゴリズムを導出する。
標準MEGデータセットの結果から,我々の手法が事象関連ニューラルレスポンスを明らかにすることが示された。
論文 参考訳(メタデータ) (2021-12-08T13:07:21Z) - Dynamic Neural Diversification: Path to Computationally Sustainable
Neural Networks [68.8204255655161]
訓練可能なパラメータが制限された小さなニューラルネットワークは、多くの単純なタスクに対してリソース効率の高い候補となる。
学習過程において隠れた層内のニューロンの多様性を探索する。
ニューロンの多様性がモデルの予測にどのように影響するかを分析する。
論文 参考訳(メタデータ) (2021-09-20T15:12:16Z) - Learning identifiable and interpretable latent models of
high-dimensional neural activity using pi-VAE [10.529943544385585]
本稿では,潜在モデルと従来のニューラルエンコーディングモデルから重要な要素を統合する手法を提案する。
我々の手法であるpi-VAEは、同定可能な変分自動エンコーダの最近の進歩にインスパイアされている。
人工データを用いてpi-VAEを検証し,それをラット海馬およびマカク運動野の神経生理学的データセットの解析に応用した。
論文 参考訳(メタデータ) (2020-11-09T22:00:38Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。