Leveraging the Power of LLMs: A Fine-Tuning Approach for High-Quality Aspect-Based Summarization
- URL: http://arxiv.org/abs/2408.02584v1
- Date: Mon, 5 Aug 2024 16:00:21 GMT
- Title: Leveraging the Power of LLMs: A Fine-Tuning Approach for High-Quality Aspect-Based Summarization
- Authors: Ankan Mullick, Sombit Bose, Rounak Saha, Ayan Kumar Bhowmick, Aditya Vempaty, Pawan Goyal, Niloy Ganguly, Prasenjit Dey, Ravi Kokku,
- Abstract summary: Large language models (LLMs) have demonstrated the potential to revolutionize diverse tasks within natural language processing.
This paper explores the potential of fine-tuning LLMs for the aspect-based summarization task.
We evaluate the impact of fine-tuning open-source foundation LLMs, including Llama2, Mistral, Gemma and Aya, on a publicly available domain-specific aspect based summary dataset.
- Score: 25.052557735932535
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The ever-increasing volume of digital information necessitates efficient methods for users to extract key insights from lengthy documents. Aspect-based summarization offers a targeted approach, generating summaries focused on specific aspects within a document. Despite advancements in aspect-based summarization research, there is a continuous quest for improved model performance. Given that large language models (LLMs) have demonstrated the potential to revolutionize diverse tasks within natural language processing, particularly in the problem of summarization, this paper explores the potential of fine-tuning LLMs for the aspect-based summarization task. We evaluate the impact of fine-tuning open-source foundation LLMs, including Llama2, Mistral, Gemma and Aya, on a publicly available domain-specific aspect based summary dataset. We hypothesize that this approach will enable these models to effectively identify and extract aspect-related information, leading to superior quality aspect-based summaries compared to the state-of-the-art. We establish a comprehensive evaluation framework to compare the performance of fine-tuned LLMs against competing aspect-based summarization methods and vanilla counterparts of the fine-tuned LLMs. Our work contributes to the field of aspect-based summarization by demonstrating the efficacy of fine-tuning LLMs for generating high-quality aspect-based summaries. Furthermore, it opens doors for further exploration of using LLMs for targeted information extraction tasks across various NLP domains.
Related papers
- EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.
We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.
Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - A Survey on Efficient Inference for Large Language Models [25.572035747669275]
Large Language Models (LLMs) have attracted extensive attention due to their remarkable performance across various tasks.
The substantial computational and memory requirements of LLM inference pose challenges for deployment in resource-constrained scenarios.
This paper presents a comprehensive survey of the existing literature on efficient LLM inference.
arXiv Detail & Related papers (2024-04-22T15:53:08Z) - Fusing Domain-Specific Content from Large Language Models into Knowledge Graphs for Enhanced Zero Shot Object State Classification [0.8232137862012223]
This study investigates the potential of Large Language Models (LLMs) in generating and providing domain-specific information.
To achieve this, an LLM is integrated into a pipeline that utilizes Knowledge Graphs and pre-trained semantic vectors.
Our findings reveal that the integration of LLM-based embeddings, in combination with general-purpose pre-trained embeddings, leads to substantial performance improvements.
arXiv Detail & Related papers (2024-03-18T18:08:44Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z) - Analyzing the Efficacy of an LLM-Only Approach for Image-based Document
Question Answering [12.064056743478865]
We study the relative contributions of the vision encoder and the language model in document question answering tasks.
Our comprehensive analysis encompasses six diverse benchmark datasets, utilizing LLMs of varying scales.
Our findings reveal that a strategy exclusively reliant on the LLM yields results that are on par with or closely approach state-of-the-art performance.
arXiv Detail & Related papers (2023-09-25T07:01:16Z) - Summarization is (Almost) Dead [49.360752383801305]
We develop new datasets and conduct human evaluation experiments to evaluate the zero-shot generation capability of large language models (LLMs)
Our findings indicate a clear preference among human evaluators for LLM-generated summaries over human-written summaries and summaries generated by fine-tuned models.
arXiv Detail & Related papers (2023-09-18T08:13:01Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
Large language models (LLMs) are favored by human annotators over the original reference summaries in commonly used summarization datasets.
We study an LLM-as-reference learning setting for smaller text summarization models to investigate whether their performance can be substantially improved.
arXiv Detail & Related papers (2023-05-23T16:56:04Z) - Summary-Oriented Vision Modeling for Multimodal Abstractive
Summarization [63.320005222549646]
Multimodal abstractive summarization (MAS) aims to produce a concise summary given the multimodal data (text and vision)
We propose to improve the summary quality through summary-oriented visual features.
Experiments on 44 languages, covering mid-high, low-, and zero-resource scenarios, verify the effectiveness and superiority of the proposed approach.
arXiv Detail & Related papers (2022-12-15T09:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.