Comparison of Code Quality and Best Practices in IoT and non-IoT Software
- URL: http://arxiv.org/abs/2408.02614v1
- Date: Mon, 5 Aug 2024 16:39:04 GMT
- Title: Comparison of Code Quality and Best Practices in IoT and non-IoT Software
- Authors: Nour Khezemi, Sikandar Ejaza, Naouel Moha, Yann-Gaël Guéhéneuc,
- Abstract summary: We compare the code quality of two equivalent sets of IoT and non-IoT systems.
We then select and present a list of best practices to address the observed difference between IoT and non-IoT code.
- Score: 3.0711566483997075
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Context: IoT systems, networks of connected devices powered by software, require studying software quality for maintenance. Despite extensive studies on non-IoT software quality, research on IoT software quality is lacking. It is uncertain if IoT and non-IoT systems software are comparable, hindering the confident application of results and best practices gained on non-IoT systems. Objective: Therefore, we compare the code quality of two equivalent sets of IoT and non-IoT systems to determine whether there are similarities and differences. We also collect and revisit software-engineering best practices in non-IoT contexts to apply them to IoT. Method: We design and apply a systematic method to select two sets of 94 non-IoT and IoT systems software from GitHub with comparable characteristics. We compute quality metrics on the systems in these two sets and then analyse and compare the metric values. We analyse in depth and provide specific examples of IoT system's complexity and how it manifests in the codebases. After the comparison, We systematically select and present a list of best practices to address the observed difference between IoT and non-IoT code. Results: Through a comparison of metrics, we conclude that software for IoT systems is more complex, coupled, larger, less maintainable, and cohesive than non-IoT systems. Several factors, such as integrating multiple hardware and software components and managing data communication between them, contribute to these differences. Considering these differences, we present a revisited best practices list with approaches, tools, or techniques for developing IoT systems. As example, applying modularity, and refactoring are best practices for lowering the complexity. Conclusion: Based on our work, researchers can now make an informed decision using existing studies on the quality of non-IoT systems for IoT systems.
Related papers
- IoT-LM: Large Multisensory Language Models for the Internet of Things [70.74131118309967]
IoT ecosystem provides rich source of real-world modalities such as motion, thermal, geolocation, imaging, depth, sensors, and audio.
Machine learning presents a rich opportunity to automatically process IoT data at scale.
We introduce IoT-LM, an open-source large multisensory language model tailored for the IoT ecosystem.
arXiv Detail & Related papers (2024-07-13T08:20:37Z) - A Lean Simulation Framework for Stress Testing IoT Cloud Systems [16.004920480830858]
The Internet of Things connects a plethora of smart devices globally across various applications like smart cities, autonomous vehicles and health monitoring.
Simulation plays a key role in the testing of IoT systems, noting that field testing of a complete IoT product may be infeasible or expensive.
Existing stress testing solutions for IoT demand significant computational resources, making them ill-suited and costly.
We propose a lean simulation framework designed for IoT cloud stress testing which enables efficient simulation of a large array of IoT and edge devices that communicate with the cloud.
arXiv Detail & Related papers (2024-04-17T16:36:55Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - MultiIoT: Benchmarking Machine Learning for the Internet of Things [70.74131118309967]
The next generation of machine learning systems must be adept at perceiving and interacting with the physical world.
sensory data from motion, thermal, geolocation, depth, wireless signals, video, and audio are increasingly used to model the states of physical environments.
Existing efforts are often specialized to a single sensory modality or prediction task.
This paper proposes MultiIoT, the most expansive and unified IoT benchmark to date, encompassing over 1.15 million samples from 12 modalities and 8 real-world tasks.
arXiv Detail & Related papers (2023-11-10T18:13:08Z) - The Internet of Senses: Building on Semantic Communications and Edge
Intelligence [67.75406096878321]
The Internet of Senses (IoS) holds the promise of flawless telepresence-style communication for all human receptors'
We elaborate on how the emerging semantic communications and Artificial Intelligence (AI)/Machine Learning (ML) paradigms may satisfy the requirements of IoS use cases.
arXiv Detail & Related papers (2022-12-21T03:37:38Z) - IoT-based Route Recommendation for an Intelligent Waste Management
System [61.04795047897888]
This work proposes an intelligent approach to route recommendation in an IoT-enabled waste management system given spatial constraints.
Our solution is based on a multiple-level decision-making process in which bins' status and coordinates are taken into account.
arXiv Detail & Related papers (2022-01-01T12:36:22Z) - Federated Learning for Internet of Things: A Federated Learning
Framework for On-device Anomaly Data Detection [10.232121085973782]
We build a FedIoT platform that contains a synthesized dataset using N-BaIoT, FedDetect algorithm, and a system design for IoT devices.
In a network of realistic IoT devices (PI), we evaluate FedIoT platform and FedDetect algorithm in both model and system performance.
arXiv Detail & Related papers (2021-06-15T08:53:42Z) - Optimizing Resource-Efficiency for Federated Edge Intelligence in IoT
Networks [96.24723959137218]
We study an edge intelligence-based IoT network in which a set of edge servers learn a shared model using federated learning (FL)
We propose a novel framework, called federated edge intelligence (FEI), that allows edge servers to evaluate the required number of data samples according to the energy cost of the IoT network.
We prove that our proposed algorithm does not cause any data leakage nor disclose any topological information of the IoT network.
arXiv Detail & Related papers (2020-11-25T12:51:59Z) - Machine learning and data analytics for the IoT [8.39035688352917]
We review how IoT-generated data are processed for machine learning analysis.
We propose a framework to enable IoT applications to adaptively learn from other IoT applications.
arXiv Detail & Related papers (2020-06-30T07:38:31Z) - Machine Learning in the Internet of Things for Industry 4.0 [0.0]
We show that organization of such systems depends on the entire processing stack, from the hardware layer all the way to the software layer, as well as on the required response times of the IoT system.
We propose a flow processing stack for such systems along with the organizational machine learning architectural patterns that enable the possibility to spread the learning and inferencing on the edge and the cloud.
arXiv Detail & Related papers (2020-05-22T12:43:15Z) - LIMITS: Lightweight Machine Learning for IoT Systems with Resource
Limitations [8.647853543335662]
We present the novel open source framework LIghtweight Machine learning for IoT Systems (LIMITS)
LIMITS applies a platform-in-the-loop approach explicitly considering the actual compilation toolchain of the target IoT platform.
We apply and validate LIMITS in two case studies focusing on cellular data rate prediction and radio-based vehicle classification.
arXiv Detail & Related papers (2020-01-28T06:34:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.