4D-Var using Hessian approximation and backpropagation applied to automatically-differentiable numerical and machine learning models
- URL: http://arxiv.org/abs/2408.02767v1
- Date: Mon, 5 Aug 2024 18:36:13 GMT
- Title: 4D-Var using Hessian approximation and backpropagation applied to automatically-differentiable numerical and machine learning models
- Authors: Kylen Solvik, Stephen G. Penny, Stephan Hoyer,
- Abstract summary: We show that an efficient alternative approximation of the Gauss-Newton method can be applied by combining backpropagation of errors with Hessian approximation.
The results indicate potential for a deeper integration of modeling, data assimilation, and new technologies in a next-generation of operational forecast systems.
- Score: 1.3142789604525646
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Constraining a numerical weather prediction (NWP) model with observations via 4D variational (4D-Var) data assimilation is often difficult to implement in practice due to the need to develop and maintain a software-based tangent linear model and adjoint model. One of the most common 4D-Var algorithms uses an incremental update procedure, which has been shown to be an approximation of the Gauss-Newton method. Here we demonstrate that when using a forecast model that supports automatic differentiation, an efficient and in some cases more accurate alternative approximation of the Gauss-Newton method can be applied by combining backpropagation of errors with Hessian approximation. This approach can be used with either a conventional numerical model implemented within a software framework that supports automatic differentiation, or a machine learning (ML) based surrogate model. We test the new approach on a variety of Lorenz-96 and quasi-geostrophic models. The results indicate potential for a deeper integration of modeling, data assimilation, and new technologies in a next-generation of operational forecast systems that leverage weather models designed to support automatic differentiation.
Related papers
- Nonlinear Model Order Reduction of Dynamical Systems in Process Engineering: Review and Comparison [50.0791489606211]
We review state-of-the-art nonlinear model order reduction methods.<n>We discuss both general-purpose methods and tailored approaches for (chemical) process systems.
arXiv Detail & Related papers (2025-06-15T11:39:12Z) - Merging Models on the Fly Without Retraining: A Sequential Approach to Scalable Continual Model Merging [75.93960998357812]
Deep model merging represents an emerging research direction that combines multiple fine-tuned models to harness their capabilities across different tasks and domains.
Current model merging techniques focus on merging all available models simultaneously, with weight matrices-based methods being the predominant approaches.
We propose a training-free projection-based continual merging method that processes models sequentially.
arXiv Detail & Related papers (2025-01-16T13:17:24Z) - Supervised Score-Based Modeling by Gradient Boosting [49.556736252628745]
We propose a Supervised Score-based Model (SSM) which can be viewed as a gradient boosting algorithm combining score matching.
We provide a theoretical analysis of learning and sampling for SSM to balance inference time and prediction accuracy.
Our model outperforms existing models in both accuracy and inference time.
arXiv Detail & Related papers (2024-11-02T07:06:53Z) - Bayesian Structural Model Updating with Multimodal Variational Autoencoder [2.4297252937957436]
The proposed method utilizes the surrogate unimodal encoders of a multimodal variational autoencoder (VAE)
It is particularly suitable for high-dimensional correlated simultaneous observations applicable to various dynamic analysis models.
arXiv Detail & Related papers (2024-06-07T23:12:51Z) - FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D Variational Assimilation [67.20588721130623]
We develop an AI-based cyclic weather forecasting system, FengWu-4DVar.
FengWu-4DVar can incorporate observational data into the data-driven weather forecasting model.
Experiments on the simulated observational dataset demonstrate that FengWu-4DVar is capable of generating reasonable analysis fields.
arXiv Detail & Related papers (2023-12-16T02:07:56Z) - Diffusion models for probabilistic programming [56.47577824219207]
Diffusion Model Variational Inference (DMVI) is a novel method for automated approximate inference in probabilistic programming languages (PPLs)
DMVI is easy to implement, allows hassle-free inference in PPLs without the drawbacks of, e.g., variational inference using normalizing flows, and does not make any constraints on the underlying neural network model.
arXiv Detail & Related papers (2023-11-01T12:17:05Z) - Online model error correction with neural networks in the incremental
4D-Var framework [0.0]
We develop a new weak-constraint 4D-Var formulation which can be used to train a neural network for online model error correction.
The method is implemented in the ECMWF Object-Oriented Prediction System.
The results confirm that online learning is effective and yields a more accurate model error correction than offline learning.
arXiv Detail & Related papers (2022-10-25T07:45:33Z) - Optimizing differential equations to fit data and predict outcomes [0.0]
Recent technical advances in automatic differentiation through numerical differential equation solvers potentially change the fitting process into a relatively easy problem.
This article illustrates how to overcome a variety of common challenges, using the classic ecological data for oscillations in hare and lynx populations.
arXiv Detail & Related papers (2022-04-16T16:08:08Z) - RMFGP: Rotated Multi-fidelity Gaussian process with Dimension Reduction
for High-dimensional Uncertainty Quantification [12.826754199680474]
Multi-fidelity modelling enables accurate inference even when only a small set of accurate data is available.
By combining the realizations of the high-fidelity model with one or more low-fidelity models, the multi-fidelity method can make accurate predictions of quantities of interest.
This paper proposes a new dimension reduction framework based on rotated multi-fidelity Gaussian process regression and a Bayesian active learning scheme.
arXiv Detail & Related papers (2022-04-11T01:20:35Z) - Generalised Latent Assimilation in Heterogeneous Reduced Spaces with
Machine Learning Surrogate Models [10.410970649045943]
We develop a system which combines reduced-order surrogate models with a novel data assimilation technique.
Generalised Latent Assimilation can benefit both the efficiency provided by the reduced-order modelling and the accuracy of data assimilation.
arXiv Detail & Related papers (2022-04-07T15:13:12Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Learning Gaussian Graphical Models via Multiplicative Weights [54.252053139374205]
We adapt an algorithm of Klivans and Meka based on the method of multiplicative weight updates.
The algorithm enjoys a sample complexity bound that is qualitatively similar to others in the literature.
It has a low runtime $O(mp2)$ in the case of $m$ samples and $p$ nodes, and can trivially be implemented in an online manner.
arXiv Detail & Related papers (2020-02-20T10:50:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.