Bayesian Structural Model Updating with Multimodal Variational Autoencoder
- URL: http://arxiv.org/abs/2406.09051v2
- Date: Thu, 20 Jun 2024 07:47:28 GMT
- Title: Bayesian Structural Model Updating with Multimodal Variational Autoencoder
- Authors: Tatsuya Itoi, Kazuho Amishiki, Sangwon Lee, Taro Yaoyama,
- Abstract summary: The proposed method utilizes the surrogate unimodal encoders of a multimodal variational autoencoder (VAE)
It is particularly suitable for high-dimensional correlated simultaneous observations applicable to various dynamic analysis models.
- Score: 2.4297252937957436
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A novel framework for Bayesian structural model updating is presented in this study. The proposed method utilizes the surrogate unimodal encoders of a multimodal variational autoencoder (VAE). The method facilitates an approximation of the likelihood when dealing with a small number of observations. It is particularly suitable for high-dimensional correlated simultaneous observations applicable to various dynamic analysis models. The proposed approach was benchmarked using a numerical model of a single-story frame building with acceleration and dynamic strain measurements. Additionally, an example involving a Bayesian update of nonlinear model parameters for a three-degree-of-freedom lumped mass model demonstrates computational efficiency when compared to using the original VAE, while maintaining adequate accuracy for practical applications.
Related papers
- Image Segmentation via Variational Model Based Tailored UNet: A Deep Variational Framework [6.146992603795658]
We propose Variational Model Based Tailored UNet (VM_TUNet) for image segmentation.<n>VM_TUNet combines the interpretability and edge-preserving properties of variational methods with the adaptive feature learning of neural networks.<n>We show that VM_TUNet achieves superior segmentation performance compared to existing approaches.
arXiv Detail & Related papers (2025-05-09T05:50:22Z) - Bayesian Experimental Design for Model Discrepancy Calibration: An Auto-Differentiable Ensemble Kalman Inversion Approach [0.0]
We propose a hybrid BED framework enabled by auto-differentiable ensemble Kalman inversion (AD-EKI)
We iteratively optimize experimental designs, decoupling the inference of low-dimensional physical parameters handled by standard BED methods.
The proposed method is studied by a classical convection-diffusion BED example.
arXiv Detail & Related papers (2025-04-29T00:10:45Z) - Latent Thought Models with Variational Bayes Inference-Time Computation [52.63299874322121]
Latent Thought Models (LTMs) incorporate explicit latent thought vectors that follow an explicit prior model in latent space.<n>LTMs demonstrate superior sample and parameter efficiency compared to autoregressive models and discrete diffusion models.
arXiv Detail & Related papers (2025-02-03T17:50:34Z) - Merging Models on the Fly Without Retraining: A Sequential Approach to Scalable Continual Model Merging [75.93960998357812]
Deep model merging represents an emerging research direction that combines multiple fine-tuned models to harness their capabilities across different tasks and domains.
Current model merging techniques focus on merging all available models simultaneously, with weight matrices-based methods being the predominant approaches.
We propose a training-free projection-based continual merging method that processes models sequentially.
arXiv Detail & Related papers (2025-01-16T13:17:24Z) - 4D-Var using Hessian approximation and backpropagation applied to automatically-differentiable numerical and machine learning models [1.3142789604525646]
We show that an efficient alternative approximation of the Gauss-Newton method can be applied by combining backpropagation of errors with Hessian approximation.
The results indicate potential for a deeper integration of modeling, data assimilation, and new technologies in a next-generation of operational forecast systems.
arXiv Detail & Related papers (2024-08-05T18:36:13Z) - Predictive Modeling in the Reservoir Kernel Motif Space [0.9217021281095907]
This work proposes a time series prediction method based on the kernel view of linear reservoirs.
We provide a geometric interpretation of our approach shedding light on how our approach is related to the core reservoir models.
Empirical experiments then compare predictive performances of our suggested model with those of recent state-of-art transformer based models.
arXiv Detail & Related papers (2024-05-11T16:12:25Z) - Consensus-Adaptive RANSAC [104.87576373187426]
We propose a new RANSAC framework that learns to explore the parameter space by considering the residuals seen so far via a novel attention layer.
The attention mechanism operates on a batch of point-to-model residuals, and updates a per-point estimation state to take into account the consensus found through a lightweight one-step transformer.
arXiv Detail & Related papers (2023-07-26T08:25:46Z) - Active-Learning-Driven Surrogate Modeling for Efficient Simulation of
Parametric Nonlinear Systems [0.0]
In absence of governing equations, we need to construct the parametric reduced-order surrogate model in a non-intrusive fashion.
Our work provides a non-intrusive optimality criterion to efficiently populate the parameter snapshots.
We propose an active-learning-driven surrogate model using kernel-based shallow neural networks.
arXiv Detail & Related papers (2023-06-09T18:01:14Z) - Distributional Learning of Variational AutoEncoder: Application to
Synthetic Data Generation [0.7614628596146602]
We propose a new approach that expands the model capacity without sacrificing the computational advantages of the VAE framework.
Our VAE model's decoder is composed of an infinite mixture of asymmetric Laplace distribution.
We apply the proposed model to synthetic data generation, and particularly, our model demonstrates superiority in easily adjusting the level of data privacy.
arXiv Detail & Related papers (2023-02-22T11:26:50Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
We propose a novel framework of Model-Agnostic Counterfactual Explanation (MACE)
In our MACE approach, we propose a novel RL-based method for finding good counterfactual examples and a gradient-less descent method for improving proximity.
Experiments on public datasets validate the effectiveness with better validity, sparsity and proximity.
arXiv Detail & Related papers (2022-05-31T04:57:06Z) - Deep Variational Models for Collaborative Filtering-based Recommender
Systems [63.995130144110156]
Deep learning provides accurate collaborative filtering models to improve recommender system results.
Our proposed models apply the variational concept to injectity in the latent space of the deep architecture.
Results show the superiority of the proposed approach in scenarios where the variational enrichment exceeds the injected noise effect.
arXiv Detail & Related papers (2021-07-27T08:59:39Z) - Model Selection for Bayesian Autoencoders [25.619565817793422]
We propose to optimize the distributional sliced-Wasserstein distance between the output of the autoencoder and the empirical data distribution.
We turn our BAE into a generative model by fitting a flexible Dirichlet mixture model in the latent space.
We evaluate our approach qualitatively and quantitatively using a vast experimental campaign on a number of unsupervised learning tasks and show that, in small-data regimes where priors matter, our approach provides state-of-the-art results.
arXiv Detail & Related papers (2021-06-11T08:55:00Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.