Deciphering Air Travel Disruptions: A Machine Learning Approach
- URL: http://arxiv.org/abs/2408.02802v1
- Date: Mon, 5 Aug 2024 19:45:07 GMT
- Title: Deciphering Air Travel Disruptions: A Machine Learning Approach
- Authors: Aravinda Jatavallabha, Jacob Gerlach, Aadithya Naresh,
- Abstract summary: This research investigates flight delay trends by examining factors such as departure time, airline, and airport.
It employs regression machine learning methods to predict the contributions of various sources to delays.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This research investigates flight delay trends by examining factors such as departure time, airline, and airport. It employs regression machine learning methods to predict the contributions of various sources to delays. Time-series models, including LSTM, Hybrid LSTM, and Bi-LSTM, are compared with baseline regression models such as Multiple Regression, Decision Tree Regression, Random Forest Regression, and Neural Network. Despite considerable errors in the baseline models, the study aims to identify influential features in delay prediction, potentially informing flight planning strategies. Unlike previous work, this research focuses on regression tasks and explores the use of time-series models for predicting flight delays. It offers insights into aviation operations by independently analyzing each delay component (e.g., security, weather).
Related papers
- Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Embedded feature selection in LSTM networks with multi-objective
evolutionary ensemble learning for time series forecasting [49.1574468325115]
We present a novel feature selection method embedded in Long Short-Term Memory networks.
Our approach optimize the weights and biases of the LSTM in a partitioned manner.
Experimental evaluations on air quality time series data from Italy and southeast Spain demonstrate that our method substantially improves the ability generalization of conventional LSTMs.
arXiv Detail & Related papers (2023-12-29T08:42:10Z) - Machine Learning-Enhanced Aircraft Landing Scheduling under
Uncertainties [14.474624795989824]
An innovative machine learning (ML)-enhanced landing scheduling methodology is proposed, aiming to improve automation and safety.
ML predictions are then integrated as safety constraints in a time-constrained traveling salesman problem formulation.
Case studies demonstrate an average 17.2% reduction in total landing time compared to the First-Come-First-Served (FCFS) rule.
arXiv Detail & Related papers (2023-11-27T17:50:14Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
This work presents the Online Neuro-Evolution-based Neural Architecture Search (ONE-NAS) algorithm.
ONE-NAS is a novel neural architecture search method capable of automatically designing and dynamically training recurrent neural networks (RNNs) for online forecasting tasks.
Results demonstrate that ONE-NAS outperforms traditional statistical time series forecasting methods.
arXiv Detail & Related papers (2023-02-20T22:25:47Z) - Spatiotemporal Propagation Learning for Network-Wide Flight Delay
Prediction [17.632313431251383]
We propose Spatiotemporal Network (STP), a space-time separable convolutional network, which is novel capturing temporal dependency modeling.
From the aspect of relation of temporal dependency modeling, we propose a multi-head self-attentional that can be learned end-to-end and explicitly reason multiple kinds of temporal dependency delay time.
arXiv Detail & Related papers (2022-07-14T14:30:59Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - Multi-Airport Delay Prediction with Transformers [0.0]
Temporal Fusion Transformer (TFT) was proposed to predict departure and arrival delays simultaneously for multiple airports.
This approach can capture complex temporal dynamics of the inputs known at the time of prediction and then forecast selected delay metrics up to four hours into the future.
arXiv Detail & Related papers (2021-11-04T21:58:11Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - Spatio-Temporal Data Mining for Aviation Delay Prediction [15.621546618044173]
We present a novel aviation delay prediction system based on stacked Long Short-Term Memory (LSTM) networks for commercial flights.
The system learns from historical trajectories from automatic dependent surveillance-broadcast (ADS-B) messages.
Compared with previous schemes, our approach is demonstrated to be more robust and accurate for large hub airports.
arXiv Detail & Related papers (2021-03-20T18:37:06Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z) - Spatio-Temporal Functional Neural Networks [11.73856529960872]
We propose two novel extensions of the Neural Functional Network (FNN), a temporal regression model whose effectiveness has been proven by many researchers.
The proposed models are then deployed to solve a practical and challenging precipitation prediction problem in the meteorology field.
arXiv Detail & Related papers (2020-09-11T21:32:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.