論文の概要: Mitigating Malicious Attacks in Federated Learning via Confidence-aware Defense
- arxiv url: http://arxiv.org/abs/2408.02813v1
- Date: Mon, 5 Aug 2024 20:27:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-07 15:38:41.237606
- Title: Mitigating Malicious Attacks in Federated Learning via Confidence-aware Defense
- Title(参考訳): 信頼・認識型防衛によるフェデレーション学習における悪意ある攻撃の軽減
- Authors: Qilei Li, Ahmed M. Abdelmoniem,
- Abstract要約: Federated Learning(FL)は、複数のクライアントがプライベートなローカルデータを共有せずにグローバルモデルのトレーニングを行うことのできる、新興の分散機械学習パラダイムである。
FLシステムは悪意のあるクライアントからの攻撃に弱いため、データ中毒やモデル中毒によってグローバルモデルのパフォーマンスを低下させることができる。
既存の防衛方法は通常、ビザンティン攻撃やバックドア攻撃のような単一のタイプの攻撃に焦点を当てる。
本稿では,クライアントモデル更新の不確実性を評価し,悪意のあるクライアントを検知・防御するモデル信頼性スコアに基づく新しい手法を提案する。
- 参考スコア(独自算出の注目度): 3.685395311534351
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) is an emerging distributed machine learning paradigm that allows multiple clients to collaboratively train a global model without sharing private local data. However, FL systems are vulnerable to attacks from malicious clients, who can degrade the global model performance through data poisoning and model poisoning. Existing defense methods typically focus on a single type of attack, such as Byzantine attacks or backdoor attacks, and are often ineffective against potential data poisoning attacks like label flipping and label shuffling. Additionally, these methods often lack accuracy and robustness in detecting and handling malicious updates. To address these issues, we propose a novel method based on model confidence scores, which evaluates the uncertainty of client model updates to detect and defend against malicious clients. Our approach is comprehensively effective for both model poisoning and data poisoning attacks and is capable of accurately identifying and mitigating potential malicious updates from being aggregated. Experimental results demonstrate that our method significantly improves the robustness of FL systems against various types of attacks, also achieving higher model accuracy and stability across various scenarios.
- Abstract(参考訳): Federated Learning(FL)は、複数のクライアントがプライベートなローカルデータを共有せずにグローバルモデルのトレーニングを行うことのできる、新興の分散機械学習パラダイムである。
しかし、FLシステムは悪意のあるクライアントからの攻撃に弱いため、データ中毒やモデル中毒によってグローバルモデルの性能を低下させることができる。
既存の防衛方法は、ビザンティン攻撃やバックドア攻撃のような単一の攻撃に重点を置いており、ラベルフリップやラベルシャッフルのような潜在的なデータ中毒攻撃に対して効果がないことが多い。
さらに、これらの手法は、悪意のある更新を検出し、処理する際に、正確さと堅牢性に欠けることが多い。
これらの問題に対処するため,モデル信頼性スコアに基づく新しい手法を提案し,悪意のあるクライアントを検知・防御するクライアントモデル更新の不確実性を評価する。
我々のアプローチは、モデル中毒とデータ中毒攻撃の両方に包括的に有効であり、潜在的に悪意のある更新が集約されるのを正確に識別し、緩和することができる。
実験の結果,FLシステムの各種攻撃に対するロバスト性は向上し,モデル精度と安定性が向上した。
関連論文リスト
- Formal Logic-guided Robust Federated Learning against Poisoning Attacks [6.997975378492098]
Federated Learning (FL)は、集中型機械学習(ML)に関連するプライバシー問題に対して、有望な解決策を提供する。
FLは、敵クライアントがトレーニングデータやモデル更新を操作して全体的なモデルパフォーマンスを低下させる、毒殺攻撃など、さまざまなセキュリティ上の脅威に対して脆弱である。
本稿では,時系列タスクにおけるフェデレート学習における中毒攻撃の軽減を目的とした防御機構を提案する。
論文 参考訳(メタデータ) (2024-11-05T16:23:19Z) - Enabling Privacy-Preserving Cyber Threat Detection with Federated Learning [4.475514208635884]
本研究は, プライバシー保護型サイバー脅威検出のための学習の可能性について, 有効性, ビザンチンレジリエンス, 効率の観点から, 体系的に検証した。
FLトレーニングされた検出モデルは、中央訓練された検出モデルに匹敵する性能が得られることを示す。
現実的な脅威モデルの下では、FLはデータ中毒とモデル中毒の両方の攻撃に対して抵抗性があることが判明した。
論文 参考訳(メタデータ) (2024-04-08T01:16:56Z) - Precision Guided Approach to Mitigate Data Poisoning Attacks in Federated Learning [4.907460152017894]
フェデレートラーニング(Federated Learning, FL)は、参加者が共有機械学習モデルを集合的にトレーニングすることを可能にする、協調学習パラダイムである。
データ中毒攻撃に対する現在のFL防衛戦略は、正確性と堅牢性の間のトレードオフを含む。
本稿では、FLにおけるデータ中毒攻撃を効果的に対処するために、ゾーンベースの退避更新(ZBDU)機構を利用するFedZZを提案する。
論文 参考訳(メタデータ) (2024-04-05T14:37:49Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
フェデレート・ラーニング(Federated Learning, FL)は、毒素による攻撃を受けやすい。
FreqFedは、モデルの更新を周波数領域に変換する新しいアグリゲーションメカニズムである。
FreqFedは, 凝集モデルの有用性に悪影響を及ぼすことなく, 毒性攻撃を効果的に軽減できることを実証した。
論文 参考訳(メタデータ) (2023-12-07T16:56:24Z) - Towards Attack-tolerant Federated Learning via Critical Parameter
Analysis [85.41873993551332]
フェデレートされた学習システムは、悪意のあるクライアントが中央サーバーに誤ったアップデートを送信すると、攻撃を害するおそれがある。
本稿では,新たな防衛戦略であるFedCPA(Federated Learning with critical Analysis)を提案する。
攻撃耐性凝集法は, 有害局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒であるのに対し, 類似したトップkおよびボトムk臨界パラメータを持つ。
論文 参考訳(メタデータ) (2023-08-18T05:37:55Z) - SureFED: Robust Federated Learning via Uncertainty-Aware Inward and
Outward Inspection [29.491675102478798]
本稿では,堅牢なフェデレーション学習のための新しいフレームワークであるSureFEDを紹介する。
SureFEDは、良識のあるクライアントのローカル情報を使って信頼を確立する。
理論的には、データとモデル中毒攻撃に対するアルゴリズムの堅牢性を証明する。
論文 参考訳(メタデータ) (2023-08-04T23:51:05Z) - FedDefender: Client-Side Attack-Tolerant Federated Learning [60.576073964874]
フェデレーション学習は、プライバシを損なうことなく、分散化されたデータソースからの学習を可能にする。
悪意のあるクライアントがトレーニングプロセスに干渉する、毒殺攻撃のモデル化には脆弱である。
我々はFedDefenderと呼ばれるクライアントサイドに焦点を当てた新しい防御機構を提案し、クライアントの堅牢なローカルモデルのトレーニングを支援する。
論文 参考訳(メタデータ) (2023-07-18T08:00:41Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
我々は,クライアントの強固化がグローバルモデル(および悪意のあるクライアント)に与える影響について検討する。
本稿では, 逆エンジニアリングによる防御手法を提案するとともに, 堅牢性を保証して, 改良を実現できることを示す。
競合する8つのSOTA防御法について, 単発および連続のFLバックドア攻撃に対して, 提案手法の実証的優位性を示した。
論文 参考訳(メタデータ) (2022-10-23T22:24:03Z) - How Robust are Randomized Smoothing based Defenses to Data Poisoning? [66.80663779176979]
我々は、トレーニングデータの品質の重要性を強調する堅牢な機械学習モデルに対して、これまで認識されていなかった脅威を提示します。
本稿では,二段階最適化に基づく新たなデータ中毒攻撃法を提案し,ロバストな分類器のロバスト性を保証する。
我々の攻撃は、被害者が最先端のロバストな訓練方法を用いて、ゼロからモデルを訓練しても効果的である。
論文 参考訳(メタデータ) (2020-12-02T15:30:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。