論文の概要: Creating a Taxonomy for Retrieval Augmented Generation Applications
- arxiv url: http://arxiv.org/abs/2408.02854v4
- Date: Tue, 18 Feb 2025 10:22:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 14:00:56.010422
- Title: Creating a Taxonomy for Retrieval Augmented Generation Applications
- Title(参考訳): 検索能力向上のための分類学の創出
- Authors: Irina Nikishina, Özge Sevgili, Mahei Manhai Li, Chris Biemann, Martin Semmann,
- Abstract要約: 我々は,検索拡張生成(RAG)アプリケーションを定義する構成特性の包括的概要を概念化する分類法を開発した。
RAGのコアディメンションの理解と提示を洗練し、強化するために設計された4つのフェーズで構成されています。
我々は、RAGアプリケーションの概念を包括的に捉えるために、合計5つのメタ次元と16の次元を開発した。
- 参考スコア(独自算出の注目度): 14.386021282361403
- License:
- Abstract: In this research, we develop a taxonomy to conceptualize a comprehensive overview of the constituting characteristics that define retrieval augmented generation (RAG) applications, facilitating the adoption of this technology for different application domains. To the best of our knowledge, no holistic RAG application taxonomies have been developed so far. We employ the method foreign to ACL and thus contribute to the set of methods in the taxonomy creation. It comprises four iterative phases designed to refine and enhance our understanding and presentation of RAG's core dimensions. We have developed a total of five meta-dimensions and sixteen dimensions to comprehensively capture the concept of RAG applications. Thus, the taxonomy can be used to better understand RAG applications and to derive design knowledge for future solutions in specific application domains.
- Abstract(参考訳): 本研究では、検索拡張生成(RAG)アプリケーションを定義する構成特性の包括的概要を概念化する分類法を開発し、この技術を異なるアプリケーション領域に導入することを容易にする。
我々の知る限りでは、これまでに総括的なRAGアプリケーション分類は開発されていない。
我々は、ACL以外の手法を採用し、分類学の創出における一連の手法に貢献する。
RAGのコアディメンションの理解と提示を洗練し、強化するために設計された4つの反復フェーズで構成されています。
我々は、RAGアプリケーションの概念を包括的に捉えるために、合計5つのメタ次元と16の次元を開発した。
したがって、分類学はRAGアプリケーションをよりよく理解し、特定のアプリケーション領域における将来のソリューションの設計知識を導き出すのに使うことができる。
関連論文リスト
- Graph Foundation Models for Recommendation: A Comprehensive Survey [55.70529188101446]
大規模言語モデル(LLM)は自然言語を処理し、理解するために設計されており、どちらも非常に効果的で広く採用されている。
最近の研究はグラフ基礎モデル(GFM)に焦点を当てている。
GFM は GNN と LLM の強みを統合し,複雑な RS 問題をより効率的にモデル化する。
論文 参考訳(メタデータ) (2025-02-12T12:13:51Z) - Enhancing Retrieval-Augmented Generation: A Study of Best Practices [16.246719783032436]
我々は,クエリ拡張,新しい検索戦略,新しいコントラシティブ・インコンテクスト学習RAGを取り入れた高度なRAGシステム設計を開発する。
本研究は,言語モデルのサイズ,プロンプトデザイン,文書チャンクサイズ,知識ベースサイズ,検索ストライド,クエリ拡張手法,文レベルでのコンテキスト検索など,重要な要素を体系的に検討する。
本研究は,RAGシステムの開発に有効な知見を提供し,文脈的豊かさと検索・生成効率のバランスを図った。
論文 参考訳(メタデータ) (2025-01-13T15:07:55Z) - Unanswerability Evaluation for Retrieval Augmented Generation [74.3022365715597]
UAEval4RAGは、RAGシステムが解答不能なクエリを効果的に処理できるかどうかを評価するために設計されたフレームワークである。
我々は、6つの未解決カテゴリを持つ分類を定義し、UAEval4RAGは、多様で挑戦的なクエリを自動的に合成する。
論文 参考訳(メタデータ) (2024-12-16T19:11:55Z) - Towards Optimizing a Retrieval Augmented Generation using Large Language Model on Academic Data [4.322454918650575]
本研究では,大規模技術大学における各種研究プログラムを対象としたデータ検索に焦点を当てた。
オープンソース(Llama2、Mistralなど)とクローズドソース(GPT-3.5、GPT-4など)の統合を探ることで、ドメイン固有のコンテキストにおけるRAGフレームワークの適用と最適化に関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2024-11-13T08:43:37Z) - CORAL: Benchmarking Multi-turn Conversational Retrieval-Augmentation Generation [68.81271028921647]
我々は,現実的なマルチターン対話環境におけるRAGシステム評価のためのベンチマークであるCORALを紹介する。
コラルにはウィキペディアから自動的に派生した多様な情報検索会話が含まれている。
対話型RAGの3つの中核的なタスク、すなわち、通過検索、応答生成、および引用ラベリングをサポートする。
論文 参考訳(メタデータ) (2024-10-30T15:06:32Z) - Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
本稿では,複雑なQAタスクに対する適応ノート拡張RAG(Adaptive Note-Enhanced RAG)と呼ばれる汎用RAGアプローチを提案する。
具体的には、Adaptive-Noteは、知識の成長に関する包括的な視点を導入し、ノート形式で新しい情報を反復的に収集する。
さらに,適切な知識探索を促進するために,適応的な音符ベースの停止探索戦略を用いて,「何を検索し,いつ停止するか」を判断する。
論文 参考訳(メタデータ) (2024-10-11T14:03:29Z) - A Comprehensive Survey of Retrieval-Augmented Generation (RAG): Evolution, Current Landscape and Future Directions [0.0]
RAGは、検索機構と生成言語モデルを組み合わせることで、出力の精度を高める。
近年の研究では, 検索効率向上のための新しい手法が注目されている。
RAGモデルの堅牢性向上に焦点をあてた今後の研究方向性が提案されている。
論文 参考訳(メタデータ) (2024-10-03T22:29:47Z) - A Survey on Retrieval-Augmented Text Generation for Large Language Models [1.4579344926652844]
Retrieval-Augmented Generation (RAG)は、検索手法とディープラーニングの進歩を融合する。
本稿では,RAGパラダイムを検索前,検索後,検索後,生成の4つのカテゴリに分類する。
RAGの進化を概説し、重要な研究の分析を通して分野の進歩について論じている。
論文 参考訳(メタデータ) (2024-04-17T01:27:42Z) - Improving Retrieval in Theme-specific Applications using a Corpus
Topical Taxonomy [52.426623750562335]
ToTER (Topical Taxonomy Enhanced Retrieval) フレームワークを紹介する。
ToTERは、クエリとドキュメントの中心的なトピックを分類学のガイダンスで識別し、そのトピックの関連性を利用して、欠落したコンテキストを補う。
プラグイン・アンド・プレイのフレームワークとして、ToTERは様々なPLMベースのレトリバーを強化するために柔軟に使用できる。
論文 参考訳(メタデータ) (2024-03-07T02:34:54Z) - Creating a Fine Grained Entity Type Taxonomy Using LLMs [0.0]
本研究は, GPT-4とその先進的な反復である GPT-4 Turbo が, 詳細な実体型分類学を自律的に開発する可能性について検討する。
我々の目的は、広く分類されたエンティティタイプから始まる包括的な分類体系を構築することである。
この分類は、GPT-4の内部知識ベースを利用して反復的なプロンプト技術によって徐々に洗練される。
論文 参考訳(メタデータ) (2024-02-19T21:32:19Z) - CRUD-RAG: A Comprehensive Chinese Benchmark for Retrieval-Augmented Generation of Large Language Models [49.16989035566899]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)の能力を高める技術である。
本稿では,大規模かつ包括的なベンチマークを構築し,様々なRAGアプリケーションシナリオにおけるRAGシステムのすべてのコンポーネントを評価する。
論文 参考訳(メタデータ) (2024-01-30T14:25:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。