論文の概要: LLMs as Probabilistic Minimally Adequate Teachers for DFA Learning
- arxiv url: http://arxiv.org/abs/2408.02999v1
- Date: Tue, 6 Aug 2024 07:12:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-07 14:49:26.949010
- Title: LLMs as Probabilistic Minimally Adequate Teachers for DFA Learning
- Title(参考訳): DFA学習における確率的最小限の教師としてのLCM
- Authors: Lekai Chen, Ashutosh Trivedi, Alvaro Velasquez,
- Abstract要約: 大規模言語モデル(LLM)におけるインテリジェンス(インテリジェンス)の出現は、オートマチックラーニングへの統合に関する調査にインスピレーションを与えている。
本稿では,pMAT (probabilistic Minimally Adequate Teacher) の定式化について紹介する。
我々は,解答精度を向上し,学習したオートマタの正確性を確保する技術を開発した。
- 参考スコア(独自算出の注目度): 11.037017229299607
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The emergence of intelligence in large language models (LLMs) has inspired investigations into their integration into automata learning. This paper introduces the probabilistic Minimally Adequate Teacher (pMAT) formulation, which leverages a probabilistic oracle that could give persistent errors randomly during answering the membership queries for deterministic finite automata (DFA) learning. Given the tendency of LLMs to produce hallucinatory content, we have developed techniques to improve answer accuracy and ensure the correctness of the learned automata. We propose the $\mathtt{Discrimination}$ prompt as well as the $\mathtt{Verification}$ prompt and explore their advantages over common prompts. Additionally, we compare DFA learning performance between the TTT algorithm and common active learning algorithms. To address the exponential number of persistent errors, we implement a dynamic query cache refinement algorithm that identifies and corrects conflicting queries by combining the active and passive learning algorithms. The empirical results demonstrate the robustness and efficiency of our approach, providing a theoretical foundation for automata learning with LLMs in the loop.
- Abstract(参考訳): 大規模言語モデル(LLM)におけるインテリジェンス(インテリジェンス)の出現は、オートマチックラーニングへの統合に関する調査にインスピレーションを与えている。
本稿では,確率的最小不適切な教師(pMAT)の定式化について述べる。これは確率的オラクルを利用して,決定論的有限オートマトン学習(DFA)に対するメンバシップクエリの応答中にランダムに永続的エラーを与える。
LLMが幻覚コンテンツを生成する傾向を鑑みて、我々は回答の精度を改善し、学習されたオートマトンの正確性を確保する技術を開発した。
我々は$\matht{Discrimination}$プロンプトと$\mathtt{Verification}$プロンプトを提案し、共通のプロンプトに対するそれらのアドバンテージを探る。
さらに,TTTアルゴリズムと一般的な能動学習アルゴリズムのDFA学習性能を比較した。
持続的エラーの指数的数に対処するため,アクティブおよび受動的学習アルゴリズムを組み合わせることで競合するクエリを識別・修正する動的クエリキャッシュ改善アルゴリズムを実装した。
実験により,提案手法の堅牢性と効率性を実証し,ループ内のLLMを用いた自動学習の理論的基礎を提供する。
関連論文リスト
- Learning Quantitative Automata Modulo Theories [17.33092604696224]
本稿では,学習者が帰納的推論によって有効なオートマトンを推論する,能動的学習アルゴリズムQUINTICを提案する。
本評価では, 累積, 減算, 積, 量的オートマトンを学習するために, 有理理論を利用する。
論文 参考訳(メタデータ) (2024-11-15T21:51:14Z) - Improving LLM Reasoning through Scaling Inference Computation with Collaborative Verification [52.095460362197336]
大規模言語モデル(LLM)は一貫性と正確な推論に苦しむ。
LLMは、主に正しいソリューションに基づいて訓練され、エラーを検出して学習する能力を減らす。
本稿では,CoT(Chain-of-Thought)とPoT(Program-of-Thought)を組み合わせた新しい協調手法を提案する。
論文 参考訳(メタデータ) (2024-10-05T05:21:48Z) - LLMs can learn self-restraint through iterative self-reflection [57.26854891567574]
大規模言語モデル(LLM)は、特定のトピックに関連する知識と不確実性に基づいて、その振る舞いを動的に適応できなければならない。
この適応的行動は、私たちが自己規制と呼ぶもので、教えるのは簡単ではない。
モデルが信頼している場合にのみ応答を生成できるようにするユーティリティ関数を考案する。
論文 参考訳(メタデータ) (2024-05-15T13:35:43Z) - Automata Learning from Preference and Equivalence Queries [17.33092604696224]
本稿では,能動オートマトン学習問題の新たな変種として,嗜好クエリを用いて有限オートマトンを積極的に学習する手法を提案する。
ReMAPは、クエリの複雑さの最小限の複雑さを、正確な等価クエリの下で正確に推測することが保証されている。
実験により,REMAPを大規模オートマトンにスケールすることは,一貫した教師から正しいオートマトンを学習するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2023-08-18T04:49:45Z) - Provably Efficient Representation Learning with Tractable Planning in
Low-Rank POMDP [81.00800920928621]
部分的に観測可能なマルコフ決定過程(POMDP)における表現学習の研究
まず,不確実性(OFU)に直面した最大推定(MLE)と楽観性を組み合わせた復調性POMDPのアルゴリズムを提案する。
次に、このアルゴリズムをより広範な$gamma$-observable POMDPのクラスで機能させる方法を示す。
論文 参考訳(メタデータ) (2023-06-21T16:04:03Z) - SatLM: Satisfiability-Aided Language Models Using Declarative Prompting [68.40726892904286]
本研究では,大規模言語モデル (LLM) の推論能力を向上させるために,新しい満足度支援言語モデリング (SatLM) 手法を提案する。
我々はLLMを用いて命令型プログラムではなく宣言型タスク仕様を生成し、既製の自動定理証明器を利用して最終解を導出する。
我々はSATLMを8つの異なるデータセット上で評価し、命令パラダイムにおいてプログラム支援されたLMよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-05-16T17:55:51Z) - MathPrompter: Mathematical Reasoning using Large Language Models [7.953723258038284]
大規模言語モデル (LLM) は算術的推論タスクを解く際の性能に制限がある。
MathPrompterはZero-shot-of- Thoughtプロンプト技術を使って複数の代数式やPython関数を生成し、異なる方法で同じ数学問題を解く。
論文 参考訳(メタデータ) (2023-03-04T04:43:49Z) - Learning Hidden Markov Models Using Conditional Samples [72.20944611510198]
本稿では,隠れマルコフモデル(HMM)の学習における計算複雑性について述べる。
本稿では,HMMの条件分布からサンプルを問合せする対話型アクセスモデルを提案する。
具体的には、正確な条件付き確率に対するクエリアクセスが可能な設定において、HMMを学習するための効率的なアルゴリズムを得る。
論文 参考訳(メタデータ) (2023-02-28T16:53:41Z) - Learning to Ask Conversational Questions by Optimizing Levenshtein
Distance [83.53855889592734]
明示的な編集動作によって最小レベンシュテイン距離(MLD)を最適化する強化反復シーケンス編集(RISE)フレームワークを導入する。
RISEは会話の特徴に関連するトークンに注意を払うことができる。
2つのベンチマークデータセットの実験結果から、RISEは最先端の手法を大幅に上回っていることがわかった。
論文 参考訳(メタデータ) (2021-06-30T08:44:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。