論文の概要: Learning Quantitative Automata Modulo Theories
- arxiv url: http://arxiv.org/abs/2411.10601v1
- Date: Fri, 15 Nov 2024 21:51:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:32:08.968235
- Title: Learning Quantitative Automata Modulo Theories
- Title(参考訳): 定量的オートマタ・モデュロ理論の学習
- Authors: Eric Hsiung, Swarat Chaudhuri, Joydeep Biswas,
- Abstract要約: 本稿では,学習者が帰納的推論によって有効なオートマトンを推論する,能動的学習アルゴリズムQUINTICを提案する。
本評価では, 累積, 減算, 積, 量的オートマトンを学習するために, 有理理論を利用する。
- 参考スコア(独自算出の注目度): 17.33092604696224
- License:
- Abstract: Quantitative automata are useful representations for numerous applications, including modeling probability distributions over sequences to Markov chains and reward machines. Actively learning such automata typically occurs using explicitly gathered input-output examples under adaptations of the L-star algorithm. However, obtaining explicit input-output pairs can be expensive, and there exist scenarios, including preference-based learning or learning from rankings, where providing constraints is a less exerting and a more natural way to concisely describe desired properties. Consequently, we propose the problem of learning deterministic quantitative automata from sets of constraints over the valuations of input sequences. We present QUINTIC, an active learning algorithm, wherein the learner infers a valid automaton through deductive reasoning, by applying a theory to a set of currently available constraints and an assumed preference model and quantitative automaton class. QUINTIC performs a complete search over the space of automata, and is guaranteed to be minimal and correctly terminate. Our evaluations utilize theory of rationals in order to learn summation, discounted summation, product, and classification quantitative automata, and indicate QUINTIC is effective at learning these types of automata.
- Abstract(参考訳): 定量的オートマトンは、マルコフ連鎖や報酬機へのシーケンス上の確率分布のモデリングを含む、多数のアプリケーションで有用な表現である。
このようなオートマトンをアクティブに学習するには、L-starアルゴリズムの適応の下で明示的に収集された入力出力の例を用いるのが一般的である。
しかし、明示的なインプット・アウトプット・ペアを得るにはコストがかかり、優先順位に基づく学習やランキングからの学習などのシナリオがあり、制約の提供は、望ましい特性を簡潔に記述するより自然な方法である。
そこで本研究では,入力シーケンスの値に対する制約の集合から決定論的定量的オートマトンを学習する問題を提案する。
本稿では,現在利用可能な制約と仮定された選好モデルと量的オートマトンクラスに理論を適用することにより,学習者が推論によって有効なオートマトンを推論する,能動的学習アルゴリズムQUINTICを提案する。
QUINTICはオートマトン空間の完全な探索を行い、最小限かつ正しく終了することが保証されている。
本評価では, 累積, 和, 積, 分類量オートマトンを学習するために有理理論を応用し, これらの種類のオートマトンを学習するのにQUINTICが有効であることを示す。
関連論文リスト
- LLMs as Probabilistic Minimally Adequate Teachers for DFA Learning [11.037017229299607]
大規模言語モデル(LLM)におけるインテリジェンス(インテリジェンス)の出現は、オートマチックラーニングへの統合に関する調査にインスピレーションを与えている。
本稿では,pMAT (probabilistic Minimally Adequate Teacher) の定式化について紹介する。
我々は,解答精度を向上し,学習したオートマタの正確性を確保する技術を開発した。
論文 参考訳(メタデータ) (2024-08-06T07:12:09Z) - Prompt Optimization with EASE? Efficient Ordering-aware Automated Selection of Exemplars [66.823588073584]
大規模言語モデル(LLM)は、現実世界のアプリケーションで印象的な機能を示している。
これらの卓越した作品の品質は、パフォーマンスに大きな影響を与えます。
既存の方法は、先行注文がパフォーマンスに与える影響を適切に説明できない。
論文 参考訳(メタデータ) (2024-05-25T08:23:05Z) - Bisimulation Learning [55.859538562698496]
我々は、大きな、潜在的に無限の状態空間を持つ状態遷移系の有限バイシミュレートを計算する。
提案手法は,実際に行われている他の最先端ツールよりも高速な検証結果が得られる。
論文 参考訳(メタデータ) (2024-05-24T17:11:27Z) - Counting Reward Automata: Sample Efficient Reinforcement Learning
Through the Exploitation of Reward Function Structure [13.231546105751015]
本稿では,形式言語として表現可能な任意の報酬関数をモデル化可能な有限状態機械変種であるカウント・リワード・オートマトンを提案する。
このような抽象機械を組み込んだエージェントが,現在の手法よりも大きなタスクの集合を解くことができることを実証する。
論文 参考訳(メタデータ) (2023-12-18T17:20:38Z) - Automata Learning from Preference and Equivalence Queries [17.33092604696224]
本稿では,能動オートマトン学習問題の新たな変種として,嗜好クエリを用いて有限オートマトンを積極的に学習する手法を提案する。
ReMAPは、クエリの複雑さの最小限の複雑さを、正確な等価クエリの下で正確に推測することが保証されている。
実験により,REMAPを大規模オートマトンにスケールすることは,一貫した教師から正しいオートマトンを学習するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2023-08-18T04:49:45Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
MACE(Model-Agnostic Counterfactual Explanation)の新たな枠組みを提案する。
MACE法では, 優れた反実例を見つけるための新しいRL法と, 近接性向上のための勾配のない降下法を提案する。
公開データセットの実験は、有効性、空間性、近接性を向上して検証する。
論文 参考訳(メタデータ) (2022-05-31T04:57:06Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetectionは,ハイブリッド生産システムにおける自動モデル学習と異常検出のための新しいアプローチである。
深層学習とタイムドオートマトンを組み合わせて、観察から行動モデルを作成する。
このアルゴリズムは実システムからの2つのデータを含む少数のデータセットに適用され、有望な結果を示している。
論文 参考訳(メタデータ) (2020-10-29T08:27:43Z) - Induction and Exploitation of Subgoal Automata for Reinforcement
Learning [75.55324974788475]
本稿では,Regressed Learning (RL)タスクにおけるサブゴールの学習と活用のためのISAを提案する。
ISAは、タスクのサブゴールによってエッジがラベル付けされたオートマトンであるサブゴールオートマトンを誘導することで強化学習をインターリーブする。
サブゴールオートマトンはまた、タスクの完了を示す状態と、タスクが成功せずに完了したことを示す状態の2つの特別な状態で構成されている。
論文 参考訳(メタデータ) (2020-09-08T16:42:55Z) - Classification Under Human Assistance [29.220005688025378]
教師付き学習モデルでは、異なる自動化レベル下での運用が、完全な自動化のためにトレーニングされた者や、単独で運用する人間よりも優れていることを示す。
医学診断におけるいくつかの応用から得られた合成および実世界のデータに関する実験は、我々の理論的知見を示している。
論文 参考訳(メタデータ) (2020-06-21T16:52:37Z) - Progressive Identification of True Labels for Partial-Label Learning [112.94467491335611]
部分ラベル学習(Partial-label Learning, PLL)は、典型的な弱教師付き学習問題であり、各トレーニングインスタンスには、真のラベルである候補ラベルのセットが設けられている。
既存のほとんどの手法は、特定の方法で解決しなければならない制約付き最適化として精巧に設計されており、計算複雑性をビッグデータにスケールアップするボトルネックにしている。
本稿では,モデルと最適化アルゴリズムの柔軟性を備えた分類器の新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-19T08:35:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。