論文の概要: Training-Free Condition Video Diffusion Models for single frame Spatial-Semantic Echocardiogram Synthesis
- arxiv url: http://arxiv.org/abs/2408.03035v2
- Date: Fri, 6 Sep 2024 15:52:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-09 18:10:23.886934
- Title: Training-Free Condition Video Diffusion Models for single frame Spatial-Semantic Echocardiogram Synthesis
- Title(参考訳): 単フレーム空間連続心エコー画像合成のための訓練自由条件ビデオ拡散モデル
- Authors: Van Phi Nguyen, Tri Nhan Luong Ha, Huy Hieu Pham, Quoc Long Tran,
- Abstract要約: 条件付きビデオ拡散モデル(CDM)はビデオ合成に有望な結果を示した。
本稿では,1つの終端セグメントマップからリアルな心エコー画像を生成するFree-Echoという新しい手法を提案する。
我々のモデルでは,入力セグメンテーションマップに空間的に整合したプラウシブル心エコー図を作成でき,トレーニングベースのCDMに匹敵する性能を達成できる。
- 参考スコア(独自算出の注目度): 0.16874375111244325
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conditional video diffusion models (CDM) have shown promising results for video synthesis, potentially enabling the generation of realistic echocardiograms to address the problem of data scarcity. However, current CDMs require a paired segmentation map and echocardiogram dataset. We present a new method called Free-Echo for generating realistic echocardiograms from a single end-diastolic segmentation map without additional training data. Our method is based on the 3D-Unet with Temporal Attention Layers model and is conditioned on the segmentation map using a training-free conditioning method based on SDEdit. We evaluate our model on two public echocardiogram datasets, CAMUS and EchoNet-Dynamic. We show that our model can generate plausible echocardiograms that are spatially aligned with the input segmentation map, achieving performance comparable to training-based CDMs. Our work opens up new possibilities for generating echocardiograms from a single segmentation map, which can be used for data augmentation, domain adaptation, and other applications in medical imaging. Our code is available at \url{https://github.com/gungui98/echo-free}
- Abstract(参考訳): 条件付きビデオ拡散モデル(CDM)はビデオ合成に有望な結果を示しており、リアルな心エコー画像の生成がデータ不足の問題に対処できる可能性がある。
しかし、現在のCDMには、ペア化されたセグメンテーションマップとエコー心電図データセットが必要である。
本稿では, 心エコー法とよばれる新しい手法を提案する。
本手法は3D-Unet with Temporal Attention Layersモデルに基づいて,SDEditに基づくトレーニングフリー条件付け手法を用いてセグメンテーションマップ上で条件付けを行う。
我々は、CAMUSとEchoNet-Dynamicの2つの公開心エコーデータを用いて、本モデルの評価を行った。
本モデルでは,入力セグメンテーションマップに空間的に整合したプラウシブル心エコー図を作成でき,トレーニングベースCDMに匹敵する性能が得られることを示す。
我々の研究は、単一のセグメンテーションマップから心エコーを生成できる新たな可能性を開く。
私たちのコードは \url{https://github.com/gungui98/echo-free} で利用可能です。
関連論文リスト
- CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - Echocardiography video synthesis from end diastolic semantic map via
diffusion model [0.0]
本稿では,心臓ビデオ合成のために既存のビデオ拡散モデルを拡張し,課題に対処することを目的とする。
我々の焦点は、心循環中に初期フレームのセマンティックマップを用いてビデオを生成することであり、一般にエンドダイアストルと呼ばれる。
本モデルでは,FID,FVD,SSMIなどの複数の指標を用いて,標準拡散法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-10-11T02:08:05Z) - Semantic-aware Temporal Channel-wise Attention for Cardiac Function
Assessment [69.02116920364311]
既存のビデオベースの手法では、左室領域や運動による左室の変化にはあまり注意を払わない。
本稿では,左室分割課題を伴う半教師付き補助学習パラダイムを提案し,左室領域の表現学習に寄与する。
提案手法は,0.22 MAE,0.26 RMSE,1.9%$R2$の改善により,スタンフォードデータセットの最先端性能を実現する。
論文 参考訳(メタデータ) (2023-10-09T05:57:01Z) - SimLVSeg: Simplifying Left Ventricular Segmentation in 2D+Time Echocardiograms with Self- and Weakly-Supervised Learning [0.8672882547905405]
狭義の心エコービデオから一貫した左室(LV)セグメンテーションを行うビデオベースネットワークであるSimLVSegを開発した。
SimLVSegは、時間的マスキングによる自己教師付き事前トレーニングと、スパースアノテーションからのLVセグメンテーションに適した弱い教師付き学習で構成されている。
我々は、SimLVSegが、最大の2D+時間心エコー画像データセットで93.32%のダイススコアを達成して、最先端のソリューションをいかに優れているかを実証する。
論文 参考訳(メタデータ) (2023-09-30T18:13:41Z) - GraphEcho: Graph-Driven Unsupervised Domain Adaptation for
Echocardiogram Video Segmentation [15.8851111502473]
本稿では,心エコービデオセグメンテーションにおける教師なし領域適応(UDA)について検討する。
既存のUDAセグメンテーション手法は、局所的な情報や心拍の周期的一貫性をモデル化しないため、このタスクには適していない。
本稿では,新たに収集したCardiacUDAデータセットと,心構造セグメンテーションのための新しいGraphEcho手法を提案する。
論文 参考訳(メタデータ) (2023-09-20T08:44:10Z) - APRF: Anti-Aliasing Projection Representation Field for Inverse Problem
in Imaging [74.9262846410559]
Sparse-view Computed Tomography (SVCT) は画像の逆問題である。
近年の研究では、インプリシット・ニューラル・リ表現(INR)を用いて、シングラムとCT画像の座標に基づくマッピングを構築している。
自己教師型SVCT再構成法の提案 -抗エイリアス射影表現場(APRF)-
APRFは空間的制約によって隣接する投影ビュー間の連続的な表現を構築することができる。
論文 参考訳(メタデータ) (2023-07-11T14:04:12Z) - Echocardiography Segmentation Using Neural ODE-based Diffeomorphic
Registration Field [0.0]
本稿ではニューラル常微分方程式(ニューラルODE)を用いた新しい拡散画像登録法を提案する。
提案手法であるEcho-ODEでは,従来の最先端技術と比較して,いくつかの改良が加えられている。
その結果,本手法は過去の最先端技術よりも多面的に優れていることがわかった。
論文 参考訳(メタデータ) (2023-06-16T08:37:27Z) - Feature-Conditioned Cascaded Video Diffusion Models for Precise
Echocardiogram Synthesis [5.102090025931326]
我々は、ビデオモデリングのための解明された拡散モデルを拡張し、単一の画像から可視なビデオシーケンスを生成する。
我々の画像からシーケンスへのアプローチは、最近提案されたシーケンスからシーケンス生成手法よりも38ポイント高い93%のR2$スコアを達成する。
論文 参考訳(メタデータ) (2023-03-22T15:26:22Z) - Weakly-supervised Learning For Catheter Segmentation in 3D Frustum
Ultrasound [74.22397862400177]
超音波を用いた新しいカテーテルセグメンテーション法を提案する。
提案手法は,1ボリュームあたり0.25秒の効率で最先端の性能を実現した。
論文 参考訳(メタデータ) (2020-10-19T13:56:22Z) - Fed-Sim: Federated Simulation for Medical Imaging [131.56325440976207]
本稿では、2つの学習可能なニューラルモジュールからなる物理駆動型生成手法を提案する。
データ合成フレームワークは、複数のデータセットの下流セグメンテーション性能を改善する。
論文 参考訳(メタデータ) (2020-09-01T19:17:46Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
ディープラーニング(DL)アルゴリズムは、学術的、産業的にも重くなっている。
セグメンテーションフレームワークにECGの検出とデライン化を組み込むことにより、低解釈タスクにDLをうまく適用できることを実証する。
このモデルは、PhyloNetのQTデータベースを使用して、105個の増幅ECG記録から訓練された。
論文 参考訳(メタデータ) (2020-05-11T16:29:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。