Analog Quantum Phase Estimation with Single-Mode Readout
- URL: http://arxiv.org/abs/2506.15668v1
- Date: Wed, 18 Jun 2025 17:50:42 GMT
- Title: Analog Quantum Phase Estimation with Single-Mode Readout
- Authors: Wei-Chen Lin, Chiao-Hsuan Wang,
- Abstract summary: Eigenvalue estimation is a central problem for demonstrating quantum advantage.<n>We present an analog quantum phase estimation protocol that extracts the eigenenergies of a target Hamiltonian.<n>Our results provide a resource-efficient and scalable framework for implementing quantum phase estimation in near-term quantum platforms.
- Score: 0.46040036610482665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Eigenvalue estimation is a central problem for demonstrating quantum advantage, yet its implementation on digital quantum computers remains limited by circuit depth and operational overhead. We present an analog quantum phase estimation (aQPE) protocol that extracts the eigenenergies of a target Hamiltonian via continuous time evolution and single-mode cavity measurement. By encoding eigenvalue information as conditional cavity phase-space rotations, the scheme avoids deep quantum circuits and entangling gates, while enabling readout through established cavity tomography techniques. We further illustrate the feasibility of this approach by engineering a Hamiltonian that implements aQPE of the XY model, whose ground-state energy problem is QMA-complete, within a physical architecture compatible with existing circuit quantum electrodynamics technology. Our results provide a resource-efficient and scalable framework for implementing quantum phase estimation in near-term quantum platforms.
Related papers
- Coupled Cluster Downfolding Theory in Simulations of Chemical Systems on Quantum Hardware [9.389379035303165]
We show how classical resources are used to construct effective Hamiltonians characterized by dimensions that conform to the constraints of current quantum devices.<n>We argue that such flexible hybrid algorithms, where problem size can be tailored to available quantum resources, can serve as a bridge between noisy intermediate-scale quantum (QNIS) devices and future fault-tolerant quantum computers.
arXiv Detail & Related papers (2025-07-01T21:34:29Z) - VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
Variational Quantum Circuits (VQCs) offer a novel pathway for quantum machine learning.<n>Their practical application is hindered by inherent limitations such as constrained linear expressivity, optimization challenges, and acute sensitivity to quantum hardware noise.<n>This work introduces VQC-MLPNet, a scalable and robust hybrid quantum-classical architecture designed to overcome these obstacles.
arXiv Detail & Related papers (2025-06-12T01:38:15Z) - Quantum metrological capability as a probe for quantum phase transition [1.5574423250822542]
The metrological capability quantified by the quantum Fisher information captivatingly shows an unique peak in the vicinity of the quantum critical point.<n>We show that the probing can be implemented by extracting quantum fluctuations of the interferometric generator.
arXiv Detail & Related papers (2024-08-19T08:18:03Z) - Quantum Computation of Electronic Structure with Projector Augmented-Wave Method and Plane Wave Basis Set [3.087342164520494]
In electronic structure calculations on classical computers, resource reduction has been achieved by using the projector augmented-wave method (PAW) and plane wave basis sets.<n>We develop a unitary variant of the PAW that preserves the orthogonality constraints.<n>We provide the quantum resources for energy estimation of a nitrogen-vacancy defect centre in diamond.
arXiv Detail & Related papers (2024-08-06T12:56:10Z) - Quantum-classical simulation of quantum field theory by quantum circuit
learning [0.0]
We employ quantum circuit learning to simulate quantum field theories (QFTs)
We find that our predictions closely align with the results of rigorous classical calculations.
This hybrid quantum-classical approach illustrates the feasibility of efficiently simulating large-scale QFTs on cutting-edge quantum devices.
arXiv Detail & Related papers (2023-11-27T20:18:39Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - Quantum simulation of open quantum systems in heavy-ion collisions [0.0]
We present a framework to simulate the dynamics of hard probes such as heavy quarks or jets in a hot, strongly-coupled quark-gluon plasma (QGP) on a quantum computer.
Our work demonstrates the feasibility of simulating open quantum systems on current and near-term quantum devices.
arXiv Detail & Related papers (2020-10-07T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.