論文の概要: Biomedical SAM 2: Segment Anything in Biomedical Images and Videos
- arxiv url: http://arxiv.org/abs/2408.03286v1
- Date: Tue, 6 Aug 2024 16:34:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-07 13:38:12.007905
- Title: Biomedical SAM 2: Segment Anything in Biomedical Images and Videos
- Title(参考訳): バイオメディカルSAM 2: バイオメディカルイメージとビデオのセグメンテーション
- Authors: Zhiling Yan, Weixiang Sun, Rong Zhou, Zhengqing Yuan, Kai Zhang, Yiwei Li, Tianming Liu, Quanzheng Li, Xiang Li, Lifang He, Lichao Sun,
- Abstract要約: SAM 2 に基づくバイオメディカルデータに最適化された基盤モデルである BioSAM 2 を開発した。
実験の結果,BioSAM 2は既存の基礎モデルの性能に勝るだけでなく,専門モデルに匹敵する,あるいは超越していることがわかった。
- 参考スコア(独自算出の注目度): 32.818587990862426
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical image segmentation and video object segmentation are essential for diagnosing and analyzing diseases by identifying and measuring biological structures. Recent advances in natural domain have been driven by foundation models like the Segment Anything Model 2 (SAM 2). To explore the performance of SAM 2 in biomedical applications, we designed two evaluation pipelines for single-frame image segmentation and multi-frame video segmentation with varied prompt designs, revealing SAM 2's limitations in medical contexts. Consequently, we developed BioSAM 2, an enhanced foundation model optimized for biomedical data based on SAM 2. Our experiments show that BioSAM 2 not only surpasses the performance of existing state-of-the-art foundation models but also matches or even exceeds specialist models, demonstrating its efficacy and potential in the medical domain.
- Abstract(参考訳): 医用画像のセグメンテーションとビデオオブジェクトのセグメンテーションは、生物学的構造を特定して測定することにより、疾患の診断と解析に不可欠である。
自然領域の最近の進歩は、セグメンション・アセシング・モデル2(SAM2)のような基礎モデルによって推進されている。
バイオメディカル・アプリケーションにおけるSAM2の性能を検討するため,単フレーム画像のセグメンテーションと多フレームビデオセグメンテーションの2つの評価パイプラインを設計し,医療現場におけるSAM2の限界を明らかにした。
そこで本研究では,SAM 2に基づくバイオメディカルデータに最適化された基盤モデルであるBioSAM 2を開発した。
以上の結果から,BioSAM 2は既存の最先端基盤モデルに勝るだけでなく,専門モデルに匹敵し,医療領域におけるその有効性と可能性を示した。
関連論文リスト
- DB-SAM: Delving into High Quality Universal Medical Image Segmentation [100.63434169944853]
本稿では,2次元医療データと2次元医療データとのギャップを埋めるために,DB-SAMという二分岐型SAMフレームワークを提案する。
文献における最近の医療用SAMアダプタと比較して,DB-SAMは8.8%向上した。
論文 参考訳(メタデータ) (2024-10-05T14:36:43Z) - Unleashing the Potential of SAM2 for Biomedical Images and Videos: A Survey [8.216028136706948]
Segment Anything Model (SAM) は、プロンプト駆動のパラダイムをイメージセグメンテーションの領域に拡張したことを示す。
最近のSAM2の導入は、オリジナルのSAMをストリーミング方式に効果的に拡張し、ビデオセグメンテーションにおいて強力なパフォーマンスを示す。
本稿では,SAM2をバイオメディカル画像やビデオに適用するための最近の取り組みの概要について述べる。
論文 参考訳(メタデータ) (2024-08-23T07:51:10Z) - SAM2-UNet: Segment Anything 2 Makes Strong Encoder for Natural and Medical Image Segmentation [51.90445260276897]
我々は,Segment Anything Model 2 (SAM2) がU字型セグメンテーションモデルの強力なエンコーダであることを証明した。
本稿では, SAM2-UNet と呼ばれる, 汎用画像分割のための簡易かつ効果的なフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-16T17:55:38Z) - Path-SAM2: Transfer SAM2 for digital pathology semantic segmentation [6.721564277355789]
Path-SAM2はSAM2モデルに初めて適応し,病的セマンティックセグメンテーションの課題に適応する。
病理組織学における最大の事前学習型視覚エンコーダ(UNI)とオリジナルのSAM2エンコーダを統合し,病理学に基づく事前知識を付加する。
3つの腺腫の病理データセットにおいて、Path-SAM2は最先端のパフォーマンスを達成した。
論文 参考訳(メタデータ) (2024-08-07T09:30:51Z) - Medical SAM 2: Segment medical images as video via Segment Anything Model 2 [4.911843298581903]
医用SAM2(MedSAM-2)は,2次元および3次元の医用画像のセグメンテーション作業に対処する高度なセグメンテーションモデルである。
MedSAM-2は、3Dの医療画像だけでなく、新しいOne-prompt機能をアンロックする。
以上の結果から,MedSAM-2は既存モデルに勝るだけでなく,医療画像のセグメンテーションタスクにも優れることがわかった。
論文 参考訳(メタデータ) (2024-08-01T18:49:45Z) - Multi-Prompt Fine-Tuning of Foundation Models for Enhanced Medical Image
Segmentation [10.946806607643689]
Segment Anything Model (SAM) は、自然画像セグメンテーションの革命的進歩を導入した強力な基礎モデルである。
本研究では,SAMのイメージ毎に複数のプロンプトをバンドルして処理する機能を活用した,新しい微調整フレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-03T19:05:00Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
我々はMA-SAMと命名されたモダリティに依存しないSAM適応フレームワークを提案する。
本手法は,重量増加のごく一部だけを更新するためのパラメータ効率の高い微調整戦略に根ざしている。
画像エンコーダのトランスバータブロックに一連の3Dアダプタを注入することにより,事前学習した2Dバックボーンが入力データから3次元情報を抽出することができる。
論文 参考訳(メタデータ) (2023-09-16T02:41:53Z) - SAM-Med2D [34.82072231983896]
我々はSAM-Med2Dを医療用2次元画像に適用する最も包括的な研究である。
まず、公開およびプライベートデータセットから約4.6Mの画像と19.7Mマスクを収集し、キュレートします。
元のSAMのエンコーダとデコーダを微調整して、良好な性能のSAM-Med2Dを得る。
論文 参考訳(メタデータ) (2023-08-30T17:59:02Z) - 3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation [52.699139151447945]
医用画像の領域分割を行うために, SAMを2次元から3次元に変換する新しい適応法を提案する。
本モデルでは, 腎腫瘍, 膵腫瘍, 大腸癌の3つのタスクのうち8.25%, 29.87%, 10.11%の3つのタスクにおいて, ドメイン・オブ・ザ・アーティヴ・メディカル・イメージ・セグメンテーション・モデルより優れ, 肝腫瘍セグメンテーションでも同様の性能が得られる。
論文 参考訳(メタデータ) (2023-06-23T12:09:52Z) - Medical SAM Adapter: Adapting Segment Anything Model for Medical Image
Segmentation [51.770805270588625]
Segment Anything Model (SAM)は画像セグメンテーションの分野で最近人気を集めている。
近年の研究では、SAMは医用画像のセグメンテーションにおいて過小評価されている。
ドメイン固有の医療知識をセグメンテーションモデルに組み込んだ医療SAMアダプタ(Med-SA)を提案する。
論文 参考訳(メタデータ) (2023-04-25T07:34:22Z) - MedSegDiff-V2: Diffusion based Medical Image Segmentation with
Transformer [53.575573940055335]
我々は、MedSegDiff-V2と呼ばれるトランスフォーマーベースの拡散フレームワークを提案する。
画像の異なる20種類の画像分割作業において,その有効性を検証する。
論文 参考訳(メタデータ) (2023-01-19T03:42:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。