The Ontoverse: Democratising Access to Knowledge Graph-based Data Through a Cartographic Interface
- URL: http://arxiv.org/abs/2408.03339v1
- Date: Mon, 22 Jul 2024 10:29:25 GMT
- Title: The Ontoverse: Democratising Access to Knowledge Graph-based Data Through a Cartographic Interface
- Authors: Johannes Zimmermann, Dariusz Wiktorek, Thomas Meusburger, Miquel Monge-Dalmau, Antonio Fabregat, Alexander Jarasch, Günter Schmidt, Jorge S. Reis-Filho, T. Ian Simpson,
- Abstract summary: We have developed a unique approach to data navigation that leans on geographical visualisation and hierarchically structured domain knowledge.
Our approach uses natural language processing techniques to extract named entities from the underlying data and normalise them against relevant semantic domain references and navigational structures.
This allows end-users to identify entities relevant to their needs and access extensive graph analytics.
- Score: 33.861478826378054
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As the number of scientific publications and preprints is growing exponentially, several attempts have been made to navigate this complex and increasingly detailed landscape. These have almost exclusively taken unsupervised approaches that fail to incorporate domain knowledge and lack the structural organisation required for intuitive interactive human exploration and discovery. Especially in highly interdisciplinary fields, a deep understanding of the connectedness of research works across topics is essential for generating insights. We have developed a unique approach to data navigation that leans on geographical visualisation and uses hierarchically structured domain knowledge to enable end-users to explore knowledge spaces grounded in their desired domains of interest. This can take advantage of existing ontologies, proprietary intelligence schemata, or be directly derived from the underlying data through hierarchical topic modelling. Our approach uses natural language processing techniques to extract named entities from the underlying data and normalise them against relevant domain references and navigational structures. The knowledge is integrated by first calculating similarities between entities based on their shared extracted feature space and then by alignment to the navigational structures. The result is a knowledge graph that allows for full text and semantic graph query and structured topic driven navigation. This allows end-users to identify entities relevant to their needs and access extensive graph analytics. The user interface facilitates graphical interaction with the underlying knowledge graph and mimics a cartographic map to maximise ease of use and widen adoption. We demonstrate an exemplar project using our generalisable and scalable infrastructure for an academic biomedical literature corpus that is grounded against hundreds of different named domain entities.
Related papers
- Towards Graph Prompt Learning: A Survey and Beyond [38.55555996765227]
Large-scale "pre-train and prompt learning" paradigms have demonstrated remarkable adaptability.
This survey categorizes over 100 relevant works in this field, summarizing general design principles and the latest applications.
arXiv Detail & Related papers (2024-08-26T06:36:42Z) - Bridging Local Details and Global Context in Text-Attributed Graphs [62.522550655068336]
GraphBridge is a framework that bridges local and global perspectives by leveraging contextual textual information.
Our method achieves state-of-theart performance, while our graph-aware token reduction module significantly enhances efficiency and solves scalability issues.
arXiv Detail & Related papers (2024-06-18T13:35:25Z) - AceMap: Knowledge Discovery through Academic Graph [90.12694363549483]
AceMap is an academic system designed for knowledge discovery through academic graph.
We present advanced database construction techniques to build the comprehensive AceMap database.
AceMap provides advanced analysis capabilities, including tracing the evolution of academic ideas.
arXiv Detail & Related papers (2024-03-05T01:17:56Z) - GLaM: Fine-Tuning Large Language Models for Domain Knowledge Graph Alignment via Neighborhood Partitioning and Generative Subgraph Encoding [39.67113788660731]
We introduce a framework for developing Graph-aligned LAnguage Models (GLaM)
We demonstrate that grounding the models in specific graph-based knowledge expands the models' capacity for structure-based reasoning.
arXiv Detail & Related papers (2024-02-09T19:53:29Z) - Coarse-to-fine Knowledge Graph Domain Adaptation based on
Distantly-supervised Iterative Training [12.62127290494378]
We propose an integrated framework for adapting and re-learning knowledge graphs.
No manual data annotation is required to train the model.
We introduce a novel iterative training strategy to facilitate the discovery of domain-specific named entities and triples.
arXiv Detail & Related papers (2022-11-05T08:16:38Z) - Mapping Research Trajectories [0.0]
We propose a principled approach for emphmapping research trajectories, which is applicable to all kinds of scientific entities.
Our visualizations depict the research topics of entities over time in a straightforward interpr. manner.
In a practical demonstrator application, we exemplify the proposed approach on a publication corpus from machine learning.
arXiv Detail & Related papers (2022-04-25T13:32:39Z) - Taxonomy Enrichment with Text and Graph Vector Representations [61.814256012166794]
We address the problem of taxonomy enrichment which aims at adding new words to the existing taxonomy.
We present a new method that allows achieving high results on this task with little effort.
We achieve state-of-the-art results across different datasets and provide an in-depth error analysis of mistakes.
arXiv Detail & Related papers (2022-01-21T09:01:12Z) - Knowledge Graph Augmented Network Towards Multiview Representation
Learning for Aspect-based Sentiment Analysis [96.53859361560505]
We propose a knowledge graph augmented network (KGAN) to incorporate external knowledge with explicitly syntactic and contextual information.
KGAN captures the sentiment feature representations from multiple perspectives, i.e., context-, syntax- and knowledge-based.
Experiments on three popular ABSA benchmarks demonstrate the effectiveness and robustness of our KGAN.
arXiv Detail & Related papers (2022-01-13T08:25:53Z) - Entity Context Graph: Learning Entity Representations
fromSemi-Structured Textual Sources on the Web [44.92858943475407]
We propose an approach that processes entity centric textual knowledge sources to learn entity embeddings.
We show that the embeddings learned from our approach are: (i) high quality and comparable to a known knowledge graph-based embeddings and can be used to improve them further.
arXiv Detail & Related papers (2021-03-29T20:52:14Z) - Graphonomy: Universal Image Parsing via Graph Reasoning and Transfer [140.72439827136085]
We propose a graph reasoning and transfer learning framework named "Graphonomy"
It incorporates human knowledge and label taxonomy into the intermediate graph representation learning beyond local convolutions.
It learns the global and structured semantic coherency in multiple domains via semantic-aware graph reasoning and transfer.
arXiv Detail & Related papers (2021-01-26T08:19:03Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
We present two self-supervised tasks learning over raw text with the guidance from knowledge graphs.
Building upon entity-level masked language models, our first contribution is an entity masking scheme.
In contrast to existing paradigms, our approach uses knowledge graphs implicitly, only during pre-training.
arXiv Detail & Related papers (2020-04-29T14:22:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.