論文の概要: Quantum Transfer Learning for MNIST Classification Using a Hybrid Quantum-Classical Approach
- arxiv url: http://arxiv.org/abs/2408.03351v1
- Date: Mon, 5 Aug 2024 22:16:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-08-08 14:36:13.190187
- Title: Quantum Transfer Learning for MNIST Classification Using a Hybrid Quantum-Classical Approach
- Title(参考訳): ハイブリッド量子古典的アプローチを用いたMNIST分類のための量子伝達学習
- Authors: Soumyadip Sarkar,
- Abstract要約: 本研究は、画像分類タスクにおける量子コンピューティングと古典的機械学習の統合について検討する。
両パラダイムの強みを生かしたハイブリッド量子古典的アプローチを提案する。
実験結果から、ハイブリッドモデルが量子コンピューティングと古典的手法を統合する可能性を示す一方で、量子結果に基づいて訓練された最終モデルの精度は、圧縮された特徴に基づいて訓練された古典的モデルよりも低いことが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this research, we explore the integration of quantum computing with classical machine learning for image classification tasks, specifically focusing on the MNIST dataset. We propose a hybrid quantum-classical approach that leverages the strengths of both paradigms. The process begins with preprocessing the MNIST dataset, normalizing the pixel values, and reshaping the images into vectors. An autoencoder compresses these 784-dimensional vectors into a 64-dimensional latent space, effectively reducing the data's dimensionality while preserving essential features. These compressed features are then processed using a quantum circuit implemented on a 5-qubit system. The quantum circuit applies rotation gates based on the feature values, followed by Hadamard and CNOT gates to entangle the qubits, and measurements are taken to generate quantum outcomes. These outcomes serve as input for a classical neural network designed to classify the MNIST digits. The classical neural network comprises multiple dense layers with batch normalization and dropout to enhance generalization and performance. We evaluate the performance of this hybrid model and compare it with a purely classical approach. The experimental results indicate that while the hybrid model demonstrates the feasibility of integrating quantum computing with classical techniques, the accuracy of the final model, trained on quantum outcomes, is currently lower than the classical model trained on compressed features. This research highlights the potential of quantum computing in machine learning, though further optimization and advanced quantum algorithms are necessary to achieve superior performance.
- Abstract(参考訳): 本研究では,MNISTデータセットに着目した画像分類タスクにおいて,量子コンピューティングと古典的機械学習の統合について検討する。
両パラダイムの強みを生かしたハイブリッド量子古典的アプローチを提案する。
このプロセスは、MNISTデータセットを前処理し、ピクセル値を正規化し、イメージをベクトルに変換することから始まる。
オートエンコーダは、これらの784次元ベクトルを64次元の潜在空間に圧縮し、本質的な特徴を保ちながらデータの次元を効果的に減少させる。
これらの圧縮された特徴は、5量子ビットシステムに実装された量子回路を用いて処理される。
量子回路は特徴値に基づいて回転ゲートを施し、続いてアダマールとCNOTゲートを施して量子ビットを絡ませ、量子結果を生成する。
これらの結果は、MNIST桁を分類するために設計された古典的ニューラルネットワークの入力として機能する。
古典的ニューラルネットワークは、一般化と性能を高めるために、バッチ正規化とドロップアウトを備えた複数の高密度層を含む。
我々は、このハイブリッドモデルの性能を評価し、純粋に古典的なアプローチと比較する。
実験結果から、ハイブリッドモデルが量子コンピューティングと古典的手法を統合する可能性を示す一方で、量子結果に基づいて訓練された最終モデルの精度は、圧縮された特徴に基づいて訓練された古典的モデルよりも低いことが示唆された。
この研究は、機械学習における量子コンピューティングの可能性を強調しているが、優れた性能を達成するためには、さらなる最適化と高度な量子アルゴリズムが必要である。
関連論文リスト
- An Efficient Quantum Classifier Based on Hamiltonian Representations [50.467930253994155]
量子機械学習(QML)は、量子コンピューティングの利点をデータ駆動タスクに移行しようとする分野である。
入力をパウリ弦の有限集合にマッピングすることで、データ符号化に伴うコストを回避できる効率的な手法を提案する。
我々は、古典的および量子モデルに対して、テキストおよび画像分類タスクに対する我々のアプローチを評価する。
論文 参考訳(メタデータ) (2025-04-13T11:49:53Z) - Quantum generative classification with mixed states [3.5212321067549994]
量子生成分類(QGC)と呼ばれる量子生成多クラス分類戦略を提案する。
このモデルは変動量子アルゴリズムを用いて、混合量子状態を用いてデータセットの特徴とラベルの結合確率密度関数を推定する。
量子生成分類アルゴリズムは、トレーニングデータの核ヒルベルト空間を再現するガウス混合とみなすことができる。
論文 参考訳(メタデータ) (2025-02-27T10:56:47Z) - Extending Quantum Perceptrons: Rydberg Devices, Multi-Class Classification, and Error Tolerance [67.77677387243135]
量子ニューロモーフィックコンピューティング(QNC)は、量子計算とニューラルネットワークを融合して、量子機械学習(QML)のためのスケーラブルで耐雑音性のあるアルゴリズムを作成する
QNCの中核は量子パーセプトロン(QP)であり、相互作用する量子ビットのアナログダイナミクスを利用して普遍的な量子計算を可能にする。
論文 参考訳(メタデータ) (2024-11-13T23:56:20Z) - Quantum Convolutional Neural Network: A Hybrid Quantum-Classical Approach for Iris Dataset Classification [0.0]
本稿では,4量子ビット量子回路と古典的ニューラルネットワークを組み合わせた,分類タスクのためのハイブリッド量子古典型機械学習モデルを提案する。
このモデルは20エポック以上で訓練され、16エポックに設定されたIrisデータセットテストで100%の精度を達成した。
この研究は、ハイブリッド量子古典モデルの研究の活発化と、実際のデータセットへの適用性に寄与する。
論文 参考訳(メタデータ) (2024-10-21T13:15:12Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Quantum Hamiltonian Embedding of Images for Data Reuploading Classifiers [0.9374652839580181]
最初の考慮事項の1つは、量子機械学習モデル自体の設計である。
最近の研究は、スピードアップによる量子アドバンテージが量子機械学習の正しい目標かどうかを疑問視し始めた。
本稿では,古典的なディープラーニングアルゴリズムの設計を量子ニューラルネットワークの設計に取り入れることで,代替手法を提案する。
論文 参考訳(メタデータ) (2024-07-19T06:31:22Z) - Supervised binary classification of small-scale digit images and weighted graphs with a trapped-ion quantum processor [56.089799129458875]
捕捉された171ドルYb$+$イオンに基づく量子プロセッサのベンチマーク結果を示す。
リングトポロジを持つ小さな二進数画像と重み付きグラフの2種類のデータセットに対して、教師付き二進分類を行う。
論文 参考訳(メタデータ) (2024-06-17T18:20:51Z) - Towards Efficient Quantum Hybrid Diffusion Models [68.43405413443175]
本稿では,量子ハイブリッド拡散モデルの設計手法を提案する。
量子コンピューティングの優れた一般化と古典的ネットワークのモジュラリティを組み合わせた2つのハイブリダイゼーション手法を提案する。
論文 参考訳(メタデータ) (2024-02-25T16:57:51Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Towards Transfer Learning for Large-Scale Image Classification Using
Annealing-based Quantum Boltzmann Machines [7.106829260811707]
本稿では,Quantum Annealing (QA) を用いた画像分類手法を提案する。
本稿では,アニール型量子ボルツマンマシンをハイブリッド量子古典パイプラインの一部として用いることを提案する。
提案手法は,テスト精度とAUC-ROC-Scoreの点で,古典的ベースラインを一貫して上回っていることがわかった。
論文 参考訳(メタデータ) (2023-11-27T16:07:49Z) - 3D-QAE: Fully Quantum Auto-Encoding of 3D Point Clouds [71.39129855825402]
既存の3D表現の学習方法は、古典的なハードウェアでトレーニングされ、テストされるディープニューラルネットワークである。
本稿では3次元点雲のための最初の量子オートエンコーダを紹介する。
論文 参考訳(メタデータ) (2023-11-09T18:58:33Z) - Quantum machine learning for image classification [39.58317527488534]
本研究では、量子力学の原理を有効計算に活用する2つの量子機械学習モデルを紹介する。
我々の最初のモデルは、並列量子回路を持つハイブリッド量子ニューラルネットワークであり、ノイズの多い中間スケール量子時代においても計算の実行を可能にする。
第2のモデルは、クオン進化層を持つハイブリッド量子ニューラルネットワークを導入し、畳み込みプロセスによる画像の解像度を低下させる。
論文 参考訳(メタデータ) (2023-04-18T18:23:20Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
古典的なディープニューラルネットワークの量子アナログを構築することは、量子コンピューティングにおける根本的な課題である。
鍵となる問題は、古典的なディープラーニングの本質的な非線形性にどのように対処するかである。
我々は、深層機械学習のこれらの側面を複製できる量子機械学習の定式化であるQuantum Path Kernelを紹介する。
論文 参考訳(メタデータ) (2022-12-22T16:06:24Z) - Photonic Quantum Computing For Polymer Classification [62.997667081978825]
2つのポリマークラス (VIS) と近赤外 (NIR) は, ポリマーギャップの大きさに基づいて定義される。
高分子構造の二項分類に対する古典量子ハイブリッド手法を提案する。
論文 参考訳(メタデータ) (2022-11-22T11:59:52Z) - Continuous Variable Quantum MNIST Classifiers [0.0]
量子ニューラルネットワークハイブリッドマルチクラス化器は、MNISTデータセットを用いて提示される。
合計8つの異なる分類器は2,3,...,8 qumodsを用いて構築される。
600のサンプルからなる切り離されたMNISTデータセットでは、4 qumodeハイブリッド分類器が100%のトレーニング精度を達成する。
論文 参考訳(メタデータ) (2022-04-04T00:51:24Z) - Multiclass classification using quantum convolutional neural networks
with hybrid quantum-classical learning [0.5999777817331318]
本稿では,量子畳み込みニューラルネットワークに基づく量子機械学習手法を提案する。
提案手法を用いて,MNISTデータセットの4クラス分類を,データエンコーディングの8つのキュービットと4つのアクニラキュービットを用いて実証する。
この結果から,学習可能なパラメータの数に匹敵する古典的畳み込みニューラルネットワークによる解の精度が示された。
論文 参考訳(メタデータ) (2022-03-29T09:07:18Z) - Multi-class quantum classifiers with tensor network circuits for quantum
phase recognition [0.0]
ネットワークにインスパイアされた回路は、変分量子固有解回路の自然な選択として提案されている。
本稿では,ツリーテンソルネットワークとマルチスケール再正規化アンサッツ回路に基づくマルチクラスの絡み合いに関する数値実験を行う。
論文 参考訳(メタデータ) (2021-10-15T21:55:13Z) - Quantum Deformed Neural Networks [83.71196337378022]
我々は,量子コンピュータ上で効率的に動作するように設計された新しい量子ニューラルネットワーク層を開発した。
入力状態の絡み合いに制限された場合、古典的なコンピュータでシミュレートすることができる。
論文 参考訳(メタデータ) (2020-10-21T09:46:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。