EEGMobile: Enhancing Speed and Accuracy in EEG-Based Gaze Prediction with Advanced Mobile Architectures
- URL: http://arxiv.org/abs/2408.03449v1
- Date: Tue, 6 Aug 2024 21:02:27 GMT
- Title: EEGMobile: Enhancing Speed and Accuracy in EEG-Based Gaze Prediction with Advanced Mobile Architectures
- Authors: Teng Liang, Andrews Damoah,
- Abstract summary: This study presents a model that leverages a pre-trained MobileViT alongside Knowledge Distillation (KD) for EEG regression tasks.
Our results showcase that this model is capable of performing at a level comparable (only 3% lower) to the previous State-Of-The-Art (SOTA) on the EEGEyeNet Absolute Position Task.
- Score: 0.36832029288386137
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Electroencephalography (EEG) analysis is an important domain in the realm of Brain-Computer Interface (BCI) research. To ensure BCI devices are capable of providing practical applications in the real world, brain signal processing techniques must be fast, accurate, and resource-conscious to deliver low-latency neural analytics. This study presents a model that leverages a pre-trained MobileViT alongside Knowledge Distillation (KD) for EEG regression tasks. Our results showcase that this model is capable of performing at a level comparable (only 3% lower) to the previous State-Of-The-Art (SOTA) on the EEGEyeNet Absolute Position Task while being 33% faster and 60% smaller. Our research presents a cost-effective model applicable to resource-constrained devices and contributes to expanding future research on lightweight, mobile-friendly models for EEG regression.
Related papers
- FEMBA: Efficient and Scalable EEG Analysis with a Bidirectional Mamba Foundation Model [19.91895489891802]
We present FEMBA (Foundational EEG Mamba + Bidirectional Architecture), a novel self-supervised framework for EEG analysis.
Unlike Transformer-based models, which incur quadratic time and memory complexity, FEMBA scales linearly with sequence length.
It achieves competitive performance in comparison with transformer models, with significantly lower computational cost.
arXiv Detail & Related papers (2025-02-10T13:15:52Z) - CEReBrO: Compact Encoder for Representations of Brain Oscillations Using Efficient Alternating Attention [53.539020807256904]
We introduce a Compact for Representations of Brain Oscillations using alternating attention (CEReBrO)
Our tokenization scheme represents EEG signals at a per-channel patch.
We propose an alternating attention mechanism that jointly models intra-channel temporal dynamics and inter-channel spatial correlations, achieving 2x speed improvement with 6x less memory required compared to standard self-attention.
arXiv Detail & Related papers (2025-01-18T21:44:38Z) - EEG-DCNet: A Fast and Accurate MI-EEG Dilated CNN Classification Method [10.791605945979995]
We present a novel multi-scale atrous convolutional neural network (CNN) model called EEG-dilated convolution network (DCNet)
We incorporate the $1times1$ convolutional layer and utilize the multi-branch parallel atrous convolutional architecture in EEG-DCNet.
We show that EEG-DCNet outperforms existing state-of-the-art (SOTA) approaches in terms of classification accuracy and Kappa scores.
arXiv Detail & Related papers (2024-11-12T09:47:50Z) - EEGPT: Unleashing the Potential of EEG Generalist Foundation Model by Autoregressive Pre-training [9.57946371147345]
EEGPT is the first generalist EEG foundation model designed to address these challenges.
First, we propose an electrode-wise modeling strategy that treats each electrode as a fundamental unit.
Second, we develop the first autoregressive EEG pre-trained model.
Third, we introduce a multi-task transfer learning paradigm using a learnable electrode graph network.
arXiv Detail & Related papers (2024-10-14T12:17:54Z) - REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
This paper introduces a novel graph-based residual state update mechanism (REST) for real-time EEG signal analysis.
By leveraging a combination of graph neural networks and recurrent structures, REST efficiently captures both non-Euclidean geometry and temporal dependencies within EEG data.
Our model demonstrates high accuracy in both seizure detection and classification tasks.
arXiv Detail & Related papers (2024-06-03T16:30:19Z) - Fusing Pretrained ViTs with TCNet for Enhanced EEG Regression [0.07999703756441758]
This paper details the integration of pre-trained Vision Transformers (ViTs) with Temporal Convolutional Networks (TCNet) to enhance the precision of EEG regression.
Our results showcase a substantial improvement in regression accuracy, as evidenced by the reduction of Root Mean Square Error (RMSE) from 55.4 to 51.8.
Without sacrificing performance, we increase the speed of this model by an order of magnitude (up to 4.32x faster)
arXiv Detail & Related papers (2024-04-02T17:01:51Z) - hvEEGNet: exploiting hierarchical VAEs on EEG data for neuroscience
applications [3.031375888004876]
Two main issues challenge the existing DL-based modeling methods for EEG.
High variability between subjects and low signal-to-noise ratio make it difficult to ensure a good quality in the EEG data.
We propose two variational autoencoder models, namely vEEGNet-ver3 and hvEEGNet, to target the problem of high-fidelity EEG reconstruction.
arXiv Detail & Related papers (2023-11-20T15:36:31Z) - Data augmentation for learning predictive models on EEG: a systematic
comparison [79.84079335042456]
deep learning for electroencephalography (EEG) classification tasks has been rapidly growing in the last years.
Deep learning for EEG classification tasks has been limited by the relatively small size of EEG datasets.
Data augmentation has been a key ingredient to obtain state-of-the-art performances across applications such as computer vision or speech.
arXiv Detail & Related papers (2022-06-29T09:18:15Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
This paper proposes a novel convolutional neural network (CNN) architecture for accurate and robust EEG-based motor imagery (MI) classification.
The proposed CNN model, namely EEG-Inception, is built on the backbone of the Inception-Time network.
The proposed network is an end-to-end classification, as it takes the raw EEG signals as the input and does not require complex EEG signal-preprocessing.
arXiv Detail & Related papers (2021-01-24T19:03:10Z) - A Novel Transferability Attention Neural Network Model for EEG Emotion
Recognition [51.203579838210885]
We propose a transferable attention neural network (TANN) for EEG emotion recognition.
TANN learns the emotional discriminative information by highlighting the transferable EEG brain regions data and samples adaptively.
This can be implemented by measuring the outputs of multiple brain-region-level discriminators and one single sample-level discriminator.
arXiv Detail & Related papers (2020-09-21T02:42:30Z) - EEG-based Brain-Computer Interfaces (BCIs): A Survey of Recent Studies
on Signal Sensing Technologies and Computational Intelligence Approaches and
their Applications [65.32004302942218]
Brain-Computer Interface (BCI) is a powerful communication tool between users and systems.
Recent technological advances have increased interest in electroencephalographic (EEG) based BCI for translational and healthcare applications.
arXiv Detail & Related papers (2020-01-28T10:36:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.