Leveraging LLMs for Enhanced Open-Vocabulary 3D Scene Understanding in Autonomous Driving
- URL: http://arxiv.org/abs/2408.03516v1
- Date: Wed, 7 Aug 2024 02:54:43 GMT
- Title: Leveraging LLMs for Enhanced Open-Vocabulary 3D Scene Understanding in Autonomous Driving
- Authors: Amirhosein Chahe, Lifeng Zhou,
- Abstract summary: This paper introduces a novel method for open-vocabulary 3D scene understanding in autonomous driving.
We propose utilizing Large Language Models (LLMs) to generate contextually relevant canonical phrases for segmentation and scene interpretation.
This work represents a significant advancement towards more intelligent, context-aware autonomous driving systems.
- Score: 9.316712964093506
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a novel method for open-vocabulary 3D scene understanding in autonomous driving by combining Language Embedded 3D Gaussians with Large Language Models (LLMs) for enhanced inference. We propose utilizing LLMs to generate contextually relevant canonical phrases for segmentation and scene interpretation. Our method leverages the contextual and semantic capabilities of LLMs to produce a set of canonical phrases, which are then compared with the language features embedded in the 3D Gaussians. This LLM-guided approach significantly improves zero-shot scene understanding and detection of objects of interest, even in the most challenging or unfamiliar environments. Experimental results on the WayveScenes101 dataset demonstrate that our approach surpasses state-of-the-art methods in terms of accuracy and flexibility for open-vocabulary object detection and segmentation. This work represents a significant advancement towards more intelligent, context-aware autonomous driving systems, effectively bridging 3D scene representation with high-level semantic understanding.
Related papers
- Distillation and Refinement of Reasoning in Small Language Models for Document Re-ranking [21.23826888841565]
We present a novel approach for training small language models for reasoning-intensive document ranking.
We use web data and a teacher LLM to automatically generate high-quality training examples with relevance explanations.
Our model ranks third on the leaderboard while using substantially fewer parameters than other approaches.
arXiv Detail & Related papers (2025-04-04T21:27:48Z) - Training Large Recommendation Models via Graph-Language Token Alignment [53.3142545812349]
We propose a novel framework to train Large Recommendation models via Graph-Language Token Alignment.
By aligning item and user nodes from the interaction graph with pretrained LLM tokens, GLTA effectively leverages the reasoning abilities of LLMs.
Furthermore, we introduce Graph-Language Logits Matching (GLLM) to optimize token alignment for end-to-end item prediction.
arXiv Detail & Related papers (2025-02-26T02:19:10Z) - MUSE-VL: Modeling Unified VLM through Semantic Discrete Encoding [6.538592344967826]
We introduce MUSE-VL, a Unified Vision-Language Model Semantic through discrete semantic.
Our method improved the understanding performance by 4.8% compared to the previous SOTA Emu3 and surpassed the dedicated understanding model LLaVA-NeXT 34B by 3.7%.
arXiv Detail & Related papers (2024-11-26T03:33:52Z) - 3D Vision-Language Gaussian Splatting [29.047044145499036]
Multi-modal 3D scene understanding has vital applications in robotics, autonomous driving, and virtual/augmented reality.
We propose a solution that achieves adequately handles the distinct visual and semantic modalities.
We also employ a camera-view blending technique to improve semantic consistency between existing views.
arXiv Detail & Related papers (2024-10-10T03:28:29Z) - EAGLE: Towards Efficient Arbitrary Referring Visual Prompts Comprehension for Multimodal Large Language Models [80.00303150568696]
We propose a novel Multimodal Large Language Models (MLLM) that empowers comprehension of arbitrary referring visual prompts with less training efforts than existing approaches.
Our approach embeds referring visual prompts as spatial concepts conveying specific spatial areas comprehensible to the MLLM.
We also propose a Geometry-Agnostic Learning paradigm (GAL) to further disentangle the MLLM's region-level comprehension with the specific formats of referring visual prompts.
arXiv Detail & Related papers (2024-09-25T08:22:00Z) - Open 3D World in Autonomous Driving [6.876824330759794]
This paper presents a novel approach that integrates 3D point cloud data, acquired from LIDAR sensors, with textual information.
We introduce an efficient framework for the fusion of bird's-eye view (BEV) region features with textual features.
The effectiveness of the proposed methodology is rigorously evaluated through extensive experimentation on the newly introduced NuScenes-T dataset.
arXiv Detail & Related papers (2024-08-20T14:10:44Z) - Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge [76.45868419402265]
multimodal large language models (MLLMs) have made significant strides by training on vast high-quality image-text datasets.
However, the inherent difficulty in explicitly conveying fine-grained or spatially dense information in text, such as masks, poses a challenge for MLLMs.
This paper proposes a new visual prompt approach to integrate fine-grained external knowledge, gleaned from specialized vision models, into MLLMs.
arXiv Detail & Related papers (2024-07-05T17:43:30Z) - Aligning Language Models with Demonstrated Feedback [58.834937450242975]
Demonstration ITerated Task Optimization (DITTO) directly aligns language model outputs to a user's demonstrated behaviors.
We evaluate DITTO's ability to learn fine-grained style and task alignment across domains such as news articles, emails, and blog posts.
arXiv Detail & Related papers (2024-06-02T23:13:56Z) - SLMRec: Distilling Large Language Models into Small for Sequential Recommendation [38.51895517016953]
Sequential Recommendation task involves predicting the next item a user is likely to interact with, given their past interactions.
Recent research demonstrates the great impact of LLMs on sequential recommendation systems.
Due to the huge size of LLMs, it is inefficient and impractical to apply a LLM-based model in real-world platforms.
arXiv Detail & Related papers (2024-05-28T07:12:06Z) - Text-Video Retrieval with Global-Local Semantic Consistent Learning [122.15339128463715]
We propose a simple yet effective method, Global-Local Semantic Consistent Learning (GLSCL)
GLSCL capitalizes on latent shared semantics across modalities for text-video retrieval.
Our method achieves comparable performance with SOTA as well as being nearly 220 times faster in terms of computational cost.
arXiv Detail & Related papers (2024-05-21T11:59:36Z) - When LLMs step into the 3D World: A Survey and Meta-Analysis of 3D Tasks via Multi-modal Large Language Models [113.18524940863841]
This survey provides a comprehensive overview of the methodologies enabling large language models to process, understand, and generate 3D data.
Our investigation spans various 3D data representations, from point clouds to Neural Radiance Fields (NeRFs)
It examines their integration with LLMs for tasks such as 3D scene understanding, captioning, question-answering, and dialogue.
arXiv Detail & Related papers (2024-05-16T16:59:58Z) - Semantic Gaussians: Open-Vocabulary Scene Understanding with 3D Gaussian Splatting [27.974762304763694]
We introduce Semantic Gaussians, a novel open-vocabulary scene understanding approach based on 3D Gaussian Splatting.
Unlike existing methods, we design a versatile projection approach that maps various 2D semantic features into a novel semantic component of 3D Gaussians.
We build a 3D semantic network that directly predicts the semantic component from raw 3D Gaussians for fast inference.
arXiv Detail & Related papers (2024-03-22T21:28:19Z) - LLMs Meet VLMs: Boost Open Vocabulary Object Detection with Fine-grained
Descriptors [58.75140338866403]
DVDet is a Descriptor-Enhanced Open Vocabulary Detector.
It transforms regional embeddings into image-like representations that can be directly integrated into general open vocabulary detection training.
Extensive experiments over multiple large-scale benchmarks show that DVDet outperforms the state-of-the-art consistently by large margins.
arXiv Detail & Related papers (2024-02-07T07:26:49Z) - Generalized Label-Efficient 3D Scene Parsing via Hierarchical Feature
Aligned Pre-Training and Region-Aware Fine-tuning [55.517000360348725]
This work presents a framework for dealing with 3D scene understanding when the labeled scenes are quite limited.
To extract knowledge for novel categories from the pre-trained vision-language models, we propose a hierarchical feature-aligned pre-training and knowledge distillation strategy.
Experiments with both indoor and outdoor scenes demonstrated the effectiveness of our approach in both data-efficient learning and open-world few-shot learning.
arXiv Detail & Related papers (2023-12-01T15:47:04Z) - Large Language Models can Contrastively Refine their Generation for Better Sentence Representation Learning [57.74233319453229]
Large language models (LLMs) have emerged as a groundbreaking technology and their unparalleled text generation capabilities have sparked interest in their application to the fundamental sentence representation learning task.
We propose MultiCSR, a multi-level contrastive sentence representation learning framework that decomposes the process of prompting LLMs to generate a corpus.
Our experiments reveal that MultiCSR enables a less advanced LLM to surpass the performance of ChatGPT, while applying it to ChatGPT achieves better state-of-the-art results.
arXiv Detail & Related papers (2023-10-17T03:21:43Z) - LLM-augmented Preference Learning from Natural Language [19.700169351688768]
Large Language Models (LLMs) are equipped to deal with larger context lengths.
LLMs can consistently outperform the SotA when the target text is large.
Few-shot learning yields better performance than zero-shot learning.
arXiv Detail & Related papers (2023-10-12T17:17:27Z) - LLM-Grounder: Open-Vocabulary 3D Visual Grounding with Large Language
Model as an Agent [23.134180979449823]
3D visual grounding is a critical skill for household robots, enabling them to navigate, manipulate objects, and answer questions based on their environment.
We propose LLM-Grounder, a novel zero-shot, open-vocabulary, Large Language Model (LLM)-based 3D visual grounding pipeline.
Our findings indicate that LLMs significantly improve the grounding capability, especially for complex language queries.
arXiv Detail & Related papers (2023-09-21T17:59:45Z) - Language models are weak learners [71.33837923104808]
We show that prompt-based large language models can operate effectively as weak learners.
We incorporate these models into a boosting approach, which can leverage the knowledge within the model to outperform traditional tree-based boosting.
Results illustrate the potential for prompt-based LLMs to function not just as few-shot learners themselves, but as components of larger machine learning pipelines.
arXiv Detail & Related papers (2023-06-25T02:39:19Z) - Efficient Nearest Neighbor Language Models [114.40866461741795]
Non-parametric neural language models (NLMs) learn predictive distributions of text utilizing an external datastore.
We show how to achieve up to a 6x speed-up in inference speed while retaining comparable performance.
arXiv Detail & Related papers (2021-09-09T12:32:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.