3D Vision-Language Gaussian Splatting
- URL: http://arxiv.org/abs/2410.07577v1
- Date: Thu, 10 Oct 2024 03:28:29 GMT
- Title: 3D Vision-Language Gaussian Splatting
- Authors: Qucheng Peng, Benjamin Planche, Zhongpai Gao, Meng Zheng, Anwesa Choudhuri, Terrence Chen, Chen Chen, Ziyan Wu,
- Abstract summary: Multi-modal 3D scene understanding has vital applications in robotics, autonomous driving, and virtual/augmented reality.
We propose a solution that achieves adequately handles the distinct visual and semantic modalities.
We also employ a camera-view blending technique to improve semantic consistency between existing views.
- Score: 29.047044145499036
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in 3D reconstruction methods and vision-language models have propelled the development of multi-modal 3D scene understanding, which has vital applications in robotics, autonomous driving, and virtual/augmented reality. However, current multi-modal scene understanding approaches have naively embedded semantic representations into 3D reconstruction methods without striking a balance between visual and language modalities, which leads to unsatisfying semantic rasterization of translucent or reflective objects, as well as over-fitting on color modality. To alleviate these limitations, we propose a solution that adequately handles the distinct visual and semantic modalities, i.e., a 3D vision-language Gaussian splatting model for scene understanding, to put emphasis on the representation learning of language modality. We propose a novel cross-modal rasterizer, using modality fusion along with a smoothed semantic indicator for enhancing semantic rasterization. We also employ a camera-view blending technique to improve semantic consistency between existing and synthesized views, thereby effectively mitigating over-fitting. Extensive experiments demonstrate that our method achieves state-of-the-art performance in open-vocabulary semantic segmentation, surpassing existing methods by a significant margin.
Related papers
- OccScene: Semantic Occupancy-based Cross-task Mutual Learning for 3D Scene Generation [84.32038395034868]
OccScene integrates fine-grained 3D perception and high-quality generation in a unified framework.
OccScene generates new and consistent 3D realistic scenes only depending on text prompts.
Experiments show that OccScene achieves realistic 3D scene generation in broad indoor and outdoor scenarios.
arXiv Detail & Related papers (2024-12-15T13:26:51Z) - Is Contrastive Distillation Enough for Learning Comprehensive 3D Representations? [55.99654128127689]
Cross-modal contrastive distillation has recently been explored for learning effective 3D representations.
Existing methods focus primarily on modality-shared features, neglecting the modality-specific features during the pre-training process.
We propose a new framework, namely CMCR, to address these shortcomings.
arXiv Detail & Related papers (2024-12-12T06:09:49Z) - Open-Vocabulary 3D Semantic Segmentation with Text-to-Image Diffusion Models [57.37244894146089]
We propose Diff2Scene, which leverages frozen representations from text-image generative models, along with salient-aware and geometric-aware masks, for open-vocabulary 3D semantic segmentation and visual grounding tasks.
We show that it outperforms competitive baselines and achieves significant improvements over state-of-the-art methods.
arXiv Detail & Related papers (2024-07-18T16:20:56Z) - Dense Multimodal Alignment for Open-Vocabulary 3D Scene Understanding [39.55810156545949]
We propose a Multimodal Alignment (DMA) framework to densely co-embed different modalities into a common space.
Our DMA method produces highly competitive open-vocabulary segmentation performance on various indoor and outdoor tasks.
arXiv Detail & Related papers (2024-07-13T05:39:17Z) - Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
We propose a generative Bayesian network to produce diverse synthetic scenes with real-world patterns.
A series of experiments robustly display our method's consistent superiority over existing state-of-the-art pre-training approaches.
arXiv Detail & Related papers (2024-06-17T07:43:53Z) - GOV-NeSF: Generalizable Open-Vocabulary Neural Semantic Fields [50.68719394443926]
Generalizable Open-Vocabulary Neural Semantic Fields (GOV-NeSF) is a novel approach offering a generalizable implicit representation of 3D scenes with open-vocabulary semantics.
GOV-NeSF exhibits state-of-the-art performance in both 2D and 3D open-vocabulary semantic segmentation.
arXiv Detail & Related papers (2024-04-01T05:19:50Z) - OV-NeRF: Open-vocabulary Neural Radiance Fields with Vision and Language Foundation Models for 3D Semantic Understanding [9.25233177676278]
OV-NeRF exploits potential of pre-trained vision and language foundation models to enhance semantic field learning.
Our approach achieves a significant improvement of 20.31% and 18.42% in mIoU metric on Replica and ScanNet, respectively.
arXiv Detail & Related papers (2024-02-07T08:19:57Z) - FMGS: Foundation Model Embedded 3D Gaussian Splatting for Holistic 3D Scene Understanding [11.118857208538039]
We present Foundation Model Embedded Gaussian Splatting (S), which incorporates vision-language embeddings of foundation models into 3D Gaussian Splatting (GS)
Results demonstrate remarkable multi-view semantic consistency, facilitating diverse downstream tasks, beating state-of-the-art methods by 10.2 percent on open-vocabulary language-based object detection.
This research explores the intersection of vision, language, and 3D scene representation, paving the way for enhanced scene understanding in uncontrolled real-world environments.
arXiv Detail & Related papers (2024-01-03T20:39:02Z) - Beyond First Impressions: Integrating Joint Multi-modal Cues for
Comprehensive 3D Representation [72.94143731623117]
Existing methods simply align 3D representations with single-view 2D images and coarse-grained parent category text.
Insufficient synergy neglects the idea that a robust 3D representation should align with the joint vision-language space.
We propose a multi-view joint modality modeling approach, termed JM3D, to obtain a unified representation for point cloud, text, and image.
arXiv Detail & Related papers (2023-08-06T01:11:40Z) - MAMO: Masked Multimodal Modeling for Fine-Grained Vision-Language
Representation Learning [23.45678557013005]
We propose a jointly masked multimodal modeling method to learn fine-grained multimodal representations.
Our method performs joint masking on image-text input and integrates both implicit and explicit targets for the masked signals to recover.
Our model achieves state-of-the-art performance on various downstream vision-language tasks, including image-text retrieval, visual question answering, visual reasoning, and weakly-supervised visual grounding.
arXiv Detail & Related papers (2022-10-09T06:31:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.