論文の概要: Minimum Enclosing Ball Synthetic Minority Oversampling Technique from a Geometric Perspective
- arxiv url: http://arxiv.org/abs/2408.03526v1
- Date: Wed, 7 Aug 2024 03:37:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-08 12:25:11.147533
- Title: Minimum Enclosing Ball Synthetic Minority Oversampling Technique from a Geometric Perspective
- Title(参考訳): 幾何学的視点から見たボールの最小包含小ささオーバーサンプリング技術
- Authors: Yi-Yang Shangguan, Shi-Shun Chen, Xiao-Yang Li,
- Abstract要約: クラス不均衡は、データセット内の異なるクラスからのサンプルの数に顕著な違いを示す。
この問題は、ソフトウェア欠陥予測、診断、不正検出など、現実世界の分類タスクで広く使われている。
クラス不均衡問題に対処するために合成マイノリティオーバーサンプリング技術(SMOTE)が広く用いられている。
本稿では,幾何学的観点から最小閉球(MEB-SMOTE)法を提案する。
- 参考スコア(独自算出の注目度): 1.7851435784917604
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Class imbalance refers to the significant difference in the number of samples from different classes within a dataset, making it challenging to identify minority class samples correctly. This issue is prevalent in real-world classification tasks, such as software defect prediction, medical diagnosis, and fraud detection. The synthetic minority oversampling technique (SMOTE) is widely used to address class imbalance issue, which is based on interpolation between randomly selected minority class samples and their neighbors. However, traditional SMOTE and most of its variants only interpolate between existing samples, which may be affected by noise samples in some cases and synthesize samples that lack diversity. To overcome these shortcomings, this paper proposes the Minimum Enclosing Ball SMOTE (MEB-SMOTE) method from a geometry perspective. Specifically, MEB is innovatively introduced into the oversampling method to construct a representative point. Then, high-quality samples are synthesized by interpolation between this representative point and the existing samples. The rationale behind constructing a representative point is discussed, demonstrating that the center of MEB is more suitable as the representative point. To exhibit the superiority of MEB-SMOTE, experiments are conducted on 15 real-world imbalanced datasets. The results indicate that MEB-SMOTE can effectively improve the classification performance on imbalanced datasets.
- Abstract(参考訳): クラス不均衡とは、データセット内の異なるクラスからのサンプルの数に大きな違いがあり、少数クラスのサンプルを正しく識別することは困難である。
この問題は、ソフトウェア欠陥予測、診断、不正検出など、現実世界の分類タスクで広く使われている。
シンセティックマイノリティオーバーサンプリング技術(SMOTE)は、ランダムに選択されたマイノリティクラスサンプルとその隣人間の補間に基づくクラス不均衡問題に対処するために広く用いられている。
しかし、従来のSMOTEとその変種のほとんどは既存のサンプルの間でのみ補間し、いくつかのケースではノイズサンプルの影響を受け、多様性に欠けるサンプルを合成する。
これらの欠点を克服するために,幾何学的観点から最小閉球法(MEB-SMOTE)を提案する。
具体的には、MEBをオーバーサンプリング法に革新的に導入し、代表点を構築する。
そして、この代表点と既存試料との補間により高品質な試料を合成する。
代表点構築の背景にある理論的根拠を議論し、MEBの中心が代表点としてより適していることを示す。
MEB-SMOTEの優位性を示すために、15の現実世界の不均衡データセットを用いて実験を行った。
その結果,MEB-SMOTEは不均衡データセットの分類性能を効果的に向上できることがわかった。
関連論文リスト
- Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
不均衡データセットは、様々な現実世界のアプリケーションで一般的に見られ、分類器の訓練において重要な課題が提示されている。
マイノリティクラスとマイノリティクラスの両方のデータサンプルを混合することにより、反復的に合成サンプルを生成することを提案する。
提案するフレームワークの有効性を,7つの公開ベンチマークデータセットを用いて広範な実験により実証する。
論文 参考訳(メタデータ) (2023-08-28T18:48:34Z) - Detecting Adversarial Data by Probing Multiple Perturbations Using
Expected Perturbation Score [62.54911162109439]
逆方向検出は、自然分布と逆方向分布の差に基づいて、与えられたサンプルが逆方向であるかどうかを判定することを目的としている。
本研究では,様々な摂動後の標本の予測スコアであるEPS(pre expected perturbation score)を提案する。
EPSに基づく最大平均誤差(MMD)を,試験試料と自然試料との差を測定する指標として開発する。
論文 参考訳(メタデータ) (2023-05-25T13:14:58Z) - BSGAN: A Novel Oversampling Technique for Imbalanced Pattern
Recognitions [0.0]
クラス不均衡問題(CIP)は、予測のための非バイアスの機械学習(ML)モデルを開発する際の潜在的な課題の1つである。
CIPは、データサンプルが2つまたは複数のクラス間で等しく分散されていない場合に発生する。
本研究では,より多様なデータを生成するために,境界線SMOTEとジェネレーティブ・アドリラル・ネットワークのパワーを組み合わせたハイブリッド・オーバーサンプリング手法を提案する。
論文 参考訳(メタデータ) (2023-05-16T20:02:39Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
医用画像セグメンテーションのための階層化グループ理論を用いた半教師付きコントラスト学習フレームワークARCOを提案する。
まず、分散還元推定の概念を用いてARCOを構築することを提案し、特定の分散還元技術が画素/ボクセルレベルのセグメンテーションタスクにおいて特に有用であることを示す。
5つの2D/3D医療データセットと3つのセマンティックセグメンテーションデータセットのラベル設定が異なる8つのベンチマークで、我々のアプローチを実験的に検証する。
論文 参考訳(メタデータ) (2023-02-03T13:50:25Z) - Intra-class Adaptive Augmentation with Neighbor Correction for Deep
Metric Learning [99.14132861655223]
深層学習のためのクラス内適応拡張(IAA)フレームワークを提案する。
クラスごとのクラス内変動を合理的に推定し, 適応型合成試料を生成し, 硬質試料の採掘を支援する。
本手法は,検索性能の最先端手法を3%~6%向上させる。
論文 参考訳(メタデータ) (2022-11-29T14:52:38Z) - Imbalanced Class Data Performance Evaluation and Improvement using Novel
Generative Adversarial Network-based Approach: SSG and GBO [0.0]
本研究は, GAN-based Oversampling (GBO) と Support Vector Machine-SMOTE-GAN (SSG) の2つの新しい手法を提案する。
予備計算の結果、SSGとGBOは元のSMOTEよりも、拡張された不均衡な8つのベンチマークデータセットでより良い性能を示した。
論文 参考訳(メタデータ) (2022-10-23T22:17:54Z) - Imbalanced Classification via a Tabular Translation GAN [4.864819846886142]
本稿では,多数のサンプルを対応する合成マイノリティ標本にマッピングするために,新たな正規化損失を用いたジェネレーティブ・アドバイサル・ネットワークに基づくモデルを提案する。
提案手法は, 再加重法やオーバーサンプリング法と比較して, 平均精度を向上することを示す。
論文 参考訳(メタデータ) (2022-04-19T06:02:53Z) - Saliency Grafting: Innocuous Attribution-Guided Mixup with Calibrated
Label Mixing [104.630875328668]
ミックスアップスキームは、強化されたトレーニングサンプルを作成するために、サンプルのペアを混ぜることを提案する。
両世界のベストを捉えた、斬新だがシンプルなミックスアップ版を提示する。
論文 参考訳(メタデータ) (2021-12-16T11:27:48Z) - A Novel Adaptive Minority Oversampling Technique for Improved
Classification in Data Imbalanced Scenarios [23.257891827728827]
異なるクラスに属するトレーニングサンプルの割合の不均衡は、しばしば従来の分類器の性能低下を引き起こす。
不均衡なデータに対処する新しい3ステップ手法を提案する。
論文 参考訳(メタデータ) (2021-03-24T09:58:02Z) - Minority Class Oversampling for Tabular Data with Deep Generative Models [4.976007156860967]
オーバーサンプリングによる非バランスな分類タスクの性能向上を図るために, 深層生成モデルを用いて現実的なサンプルを提供する能力について検討した。
実験の結果,サンプリング手法は品質に影響を与えないが,実行環境は様々であることがわかった。
また、性能指標の点でも改善が重要であるが、絶対的な点では小さな点がしばしば見られる。
論文 参考訳(メタデータ) (2020-05-07T21:35:57Z) - M2m: Imbalanced Classification via Major-to-minor Translation [79.09018382489506]
ほとんどの実世界のシナリオでは、ラベル付きトレーニングデータセットは非常にクラス不均衡であり、ディープニューラルネットワークは、バランスの取れたテスト基準への一般化に苦しむ。
本稿では,より頻度の低いクラスを,より頻度の低いクラスからのサンプルを翻訳することによって,この問題を緩和する新しい方法を提案する。
提案手法は,従来の再サンプリング法や再重み付け法と比較して,マイノリティクラスの一般化を著しく改善することを示す。
論文 参考訳(メタデータ) (2020-04-01T13:21:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。