NeurAM: nonlinear dimensionality reduction for uncertainty quantification through neural active manifolds
- URL: http://arxiv.org/abs/2408.03534v1
- Date: Wed, 7 Aug 2024 04:27:58 GMT
- Title: NeurAM: nonlinear dimensionality reduction for uncertainty quantification through neural active manifolds
- Authors: Andrea Zanoni, Gianluca Geraci, Matteo Salvador, Alison L. Marsden, Daniele E. Schiavazzi,
- Abstract summary: We leverage autoencoders to discover a one-dimensional neural active manifold (NeurAM) capturing the model output variability.
We show how NeurAM can be used to obtain multifidelity sampling estimators with reduced variance.
- Score: 0.6990493129893112
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a new approach for nonlinear dimensionality reduction, specifically designed for computationally expensive mathematical models. We leverage autoencoders to discover a one-dimensional neural active manifold (NeurAM) capturing the model output variability, plus a simultaneously learnt surrogate model with inputs on this manifold. The proposed dimensionality reduction framework can then be applied to perform outer loop many-query tasks, like sensitivity analysis and uncertainty propagation. In particular, we prove, both theoretically under idealized conditions, and numerically in challenging test cases, how NeurAM can be used to obtain multifidelity sampling estimators with reduced variance by sampling the models on the discovered low-dimensional and shared manifold among models. Several numerical examples illustrate the main features of the proposed dimensionality reduction strategy, and highlight its advantages with respect to existing approaches in the literature.
Related papers
- Proximal Interacting Particle Langevin Algorithms [0.0]
We introduce Proximal Interacting Particle Langevin Algorithms (PIPLA) for inference and learning in latent variable models.
We propose several variants within the novel proximal IPLA family, tailored to the problem of estimating parameters in a non-differentiable statistical model.
Our theory and experiments together show that PIPLA family can be the de facto choice for parameter estimation problems in latent variable models for non-differentiable models.
arXiv Detail & Related papers (2024-06-20T13:16:41Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
Deep generative models have demonstrated successful applications in learning non-linear data distributions through a number of latent variables.
The nonlinearity of the generator implies that the latent space shows an unsatisfactory projection of the data space, which results in poor representation learning.
We show that geodesics and accurate computation can substantially improve the performance of deep generative models.
arXiv Detail & Related papers (2023-04-03T13:13:19Z) - Learning Low Dimensional State Spaces with Overparameterized Recurrent
Neural Nets [57.06026574261203]
We provide theoretical evidence for learning low-dimensional state spaces, which can also model long-term memory.
Experiments corroborate our theory, demonstrating extrapolation via learning low-dimensional state spaces with both linear and non-linear RNNs.
arXiv Detail & Related papers (2022-10-25T14:45:15Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - RMFGP: Rotated Multi-fidelity Gaussian process with Dimension Reduction
for High-dimensional Uncertainty Quantification [12.826754199680474]
Multi-fidelity modelling enables accurate inference even when only a small set of accurate data is available.
By combining the realizations of the high-fidelity model with one or more low-fidelity models, the multi-fidelity method can make accurate predictions of quantities of interest.
This paper proposes a new dimension reduction framework based on rotated multi-fidelity Gaussian process regression and a Bayesian active learning scheme.
arXiv Detail & Related papers (2022-04-11T01:20:35Z) - Low-rank Characteristic Tensor Density Estimation Part II: Compression
and Latent Density Estimation [31.631861197477185]
Learning generative probabilistic models is a core problem in machine learning.
This paper proposes a joint dimensionality reduction and non-parametric density estimation framework.
We demonstrate that the proposed model achieves very promising results on regression tasks, sampling, and anomaly detection.
arXiv Detail & Related papers (2021-06-20T00:38:56Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - Bayesian neural networks and dimensionality reduction [4.039245878626346]
A class of model-based approaches for such problems includes latent variables in an unknown non-linear regression function.
VAEs are artificial neural networks (ANNs) that employ approximations to make computation tractable.
We deploy Markov chain Monte Carlo sampling algorithms for Bayesian inference in ANN models with latent variables.
arXiv Detail & Related papers (2020-08-18T17:11:07Z) - Estimating Model Uncertainty of Neural Networks in Sparse Information
Form [39.553268191681376]
We present a sparse representation of model uncertainty for Deep Neural Networks (DNNs)
The key insight of our work is that the information matrix tends to be sparse in its spectrum.
We show that the information form can be scalably applied to represent model uncertainty in DNNs.
arXiv Detail & Related papers (2020-06-20T18:09:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.